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Euler’s Formula ←
We start with Euler’s formula for polyhedra (and, hence for
connected planar graphs . . . ):

v − e+ f = 2

where v is the number of vertices, e is the number of edges,
and f is the number of faces.

We can show that this formula is correct by induction. First,
though, we will change our view of a 3-dimensional polyhedron
to a flat object in the plane. We poke a hole inside one face,
and stretch that point / face out to infinity in all directions.
What we then have is a collection of vertices, some of which
are connected by edges. A face is a region surrounded by
edges, with no vertices or edges in the interior. Note that there
is one large exterior face surrounding everything and going off
to infinity in all directions.
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(do induction . . . exercise . . . )

There is a nice corollary to the Euler formula. Note that each
face is bounded by at least 3 edges, and each edge is part of
the boundary of a face twice (once on each side of the edge),
and so

3f ≤ 2e.

Now, from Euler’s formula, we have

f = 2− v + e

and so

3(2− v + e) ≤ 2e

or

2− v + e ≤
2

3
e.
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Moving things around, we have
1

3
e ≤ v − 2

or

e ≤ 3v − 6.

From this, we can get a nice fact: every planar graph has a
vertex of degree 5 or fewer.

We can show this by contradiction. First, note that every edge
has a vertex at each end, and so the sum of all the degrees of
the vertices is equal to twice the number of edges. Now, if all
the degrees are greater than or equal to 6, we will have that

6v ≤ sum of degrees = 2e

or

3v ≤ e.

5



Now, putting together the two inequalities, we would have

3v ≤ e ≤ 3v − 6.

This is obviously a contradiction.

Therefore, it must be the case that there is at least one vertex
with degree 5 or fewer.

6



The 6-Color Theorem ←

Now it is easy to prove the 6-Color Theorem.

First, let’s clarify what we mean by that. A (vertex) coloring of
a graph is an assignment of colors to the vertices of the graph
in such a way that no edge has the same color assigned to the
vertices at both its ends. For any n, we say that a graph can
be n-colored if we can color the graph with n (or fewer) colors.
The 6-color theorem is then:

Theorem 1. Every planar graph can be 6-colored.

Proof: This is now easy. We do it by induction. First, without
loss of generality (WLOG), we can assume that the graph is
connected. If it is not connected, we just color each connected
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component. They never conflict with each other, so we will be
done.

We will do the induction on the number of vertices.

Base case: The simplest connected planar graph consists of a
single vertex. Pick a color for that vertex. we are done.

Induction step: Assume k ≥ 1, and assume that every planar
graph with k or fewer vertices can be 6-colored. Now consider
a planar graph with k +1 vertices. From above, we know that
the graph has a vertex of degree 5 or fewer. Remove that
vertex (and all edges connected to it). By the induction
hypothesis, we can 6-color the remaining graph. Put the vertex
(and edges) back in. We have a graph with every vertex
colored (without conflicts) except for the ”special” one. There

8



are at most 5 colors adjacent, so we have at least one color
left. Use an available color for that vertex. We have then
6-colored the graph.

By induction, the theorem is proved. Q.E.D.
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The 5-Color Theorem ←

Somewhat more difficult, but still not too hard, is the next
theorem:

Theorem 2. Every planar graph can be 5-colored.

Proof: As you might expect, we will again do this by induction
on the number of vertices.

Base case: The simplest connected planar graph consists of a
single vertex. Pick a color for that vertex. we are done.

Induction step: Assume k ≥ 1, and assume that every planar
graph with k or fewer vertices can be 5-colored. Now consider
a planar graph with k +1 vertices. From above, we know that
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the graph has a vertex of degree 5 or fewer. Remove that
vertex (and all edges connected to it). By the induction
hypothesis, we can 5-color the remaining graph. Put the vertex
(and edges) back in. We have a graph with every vertex
colored (without conflicts) except for the one.

If the vertex has degree less than 5, or if it has degree 5 and
only 4 or fewer colors are used for vertices connected to it, we
can pick an available color for it, and we are done (numbers
represent colors).

1

2

3

4

5 1

2

3

41

5
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If the vertex has degree 5, and all 5 colors are connected to it,
we have a little more work to do. In this case, using numbers 1
through 5 to represent colors, we label the vertices adjacent to
the “special” (degree 5) vertex 1 through 5 (in order).

1

2

3

45

Now make a subgraph out of all the vertices colored 1 or 3
which are connected to the 1 and 3 colored vertices adjacent to
the ”special” vertex.
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1

2

3

45

3

3

1

1

...

... 1

3 ...

If the adjacent vertex colored 1 and the adjacent vertex colored
3 are not connected by a path in this subgraph, simply
exchange the colors 1 and 3 throughout the subgraph
connected to the vertex colored 1.

This will leave color 1 available to color the ”special” vertex,
and we are done.
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3

2

3

45

1

1

3

3

...

... 1

3 ...1

On the other hand, if the vertices colored 1 and 3 are
connected via a path in the subgraph, we do the same
”subgraph” process with vertices colored 2 and 4 adjacent to
the ”special” vertex. Note that this will be a disconnected pair
of subgraphs, separated by a path connecting the vertices
colored 1 and 3. Now we can exchange the colors 2 and 4 in
the subgraph connected to the adjacent vertex labeled 2. This
will leave color 2 for the ”special” vertex.
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1

2

3

45

3

1 3

14 4

2

4

4

2 ...

2 ...

1

4

3

45

3

1 3

12 2

2

4

4

2 ...

2 ...

2
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Thus, we will be able to color the entire planar graph with 5
colors, and the induction is done. Q.E.D.
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The 4-Color Theorem ←

It turns out that it is actually a theorem that 4 colors are
enough for any planar graph (map-coloring . . .). The proof of
that fact is significantly more difficult, and has only been done
with the aid of exhaustive computer analysis of many special
cases.
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