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Introduction

The spectral graph theory studies the properties of graphs via
the eigenvalues and eigenvectors of their associated graph
matrices: the adjacency matrix and the graph Laplacian and
its variants.

Both matrices have been extremely well studied from an
algebraic point of view.

The Laplacian allows a natural link between discrete
representations, such as graphs, and continuous
representations, such as vector spaces and manifolds.

The most important application of the Laplacian is spectral
clustering that corresponds to a computationally tractable
solution to the graph partitionning problem.

Another application is spectral matching that solves for graph
matching.
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Applications of spectral graph theory

Spectral partitioning: automatic circuit placement for VLSI
(Alpert et al 1999), image segmentation (Shi & Malik 2000),

Text mining and web applications: document classification
based on semantic association of words (Lafon & Lee 2006),
collaborative recommendation (Fouss et al. 2007), text
categorization based on reader similarity (Kamvar et al. 2003).

Manifold analysis: Manifold embedding, manifold learning,
mesh segmentation, etc.
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Basic graph notations and definitions

We consider simple graphs (no multiple edges or loops),
G = {V, E}:

V(G) = {v1, . . . , vn} is called the vertex set with n = |V|;
E(G) = {eij} is called the edge set with m = |E|;
An edge eij connects vertices vi and vj if they are adjacent or
neighbors. One possible notation for adjacency is vi ∼ vj ;
The number of neighbors of a node v is called the degree of v
and is denoted by d(v), d(vi) =

∑
vi∼vj

eij . If all the nodes of
a graph have the same degree, the graph is regular ; The
nodes of an Eulerian graph have even degree.

A graph is complete if there is an edge between every pair of
vertices.
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Subgraph of a graph

H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G);

a subgraph H is an induced subgraph of G if two vertices of
V(H) are adjacent if and only if they are adjacent in G.

A clique is a complete subgraph of a graph.

A path of k vertices is a sequence of k distinct vertices such
that consecutive vertices are adjacent.

A cycle is a connected subgraph where every vertex has
exactly two neighbors.

A graph containing no cycles is a forest. A connected forest is
a tree.
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A k-partite graph

A graph is called k-partite if its set
of vertices admits a partition into k
classes such that the vertices of the
same class are not adjacent.

An example of a bipartite graph.
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The adjacency matrix of a graph

For a graph with n vertices, the entries of the n× n adjacency
matrix are defined by:

A :=


Aij = 1 if there is an edge eij
Aij = 0 if there is no edge
Aii = 0

A =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0


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Eigenvalues and eigenvectors

A is a real-symmetric matrix: it has n real eigenvalues and its
n real eigenvectors form an orthonormal basis.

Let {λ1, . . . , λi, . . . , λr} be the set of distinct eigenvalues.

The eigenspace Si contains the eigenvectors associated with
λi:

Si = {x ∈ Rn|Ax = λix}

For real-symmetric matrices, the algebraic multiplicity is equal
to the geometric multiplicity, for all the eigenvalues.

The dimension of Si (geometric multiplicity) is equal to the
multiplicity of λi.

If λi 6= λj then Si and Sj are mutually orthogonal.
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Real-valued functions on graphs

We consider real-valued functions on the set of the graph’s
vertices, f : V −→ R. Such a function assigns a real number
to each graph node.

f is a vector indexed by the graph’s vertices, hence f ∈ Rn.

Notation: f = (f(v1), . . . , f(vn)) = (f(1), . . . , f(n)) .

The eigenvectors of the adjacency matrix, Ax = λx, can be
viewed as eigenfunctions.
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Matrix A as an operator and quadratic form

The adjacency matrix can be viewed as an operator

g = Af ; g(i) =
∑
i∼j

f(j)

It can also be viewed as a quadratic form:

f>Af =
∑
eij

f(i)f(j)
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The incidence matrix of a graph

Let each edge in the graph have an arbitrary but fixed
orientation;

The incidence matrix of a graph is a |E| × |V| (m× n) matrix
defined as follows:

5 :=


5ev = −1 if v is the initial vertex of edge e
5ev = 1 if v is the terminal vertex of edge e
5ev = 0 if v is not in e

5 =


−1 1 0 0
1 0 −1 0
0 −1 1 0
0 −1 0 +1


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The incidence matrix: A discrete differential operator

The mapping f −→ 5f is known as the co-boundary
mapping of the graph.

(5f)(eij) = f(vj)− f(vi)
f(2)− f(1)
f(1)− f(3)
f(3)− f(2)
f(4)− f(2)

 =


−1 1 0 0
1 0 −1 0
0 −1 1 0
0 −1 0 +1




f(1)
f(2)
f(3)
f(4)


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The Laplacian matrix of a graph

L = 5>5
(Lf)(vi) =

∑
vj∼vi

(f(vi)− f(vj))
Connection between the Laplacian and the adjacency matrices:

L = D−A

The degree matrix: D := Dii = d(vi).

L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1


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The Laplacian matrix of an undirected weighted graph

We consider undirected weighted graphs: Each edge eij is
weighted by wij > 0.

The Laplacian as an operator:

(Lf)(vi) =
∑
vj∼vi

wij(f(vi)− f(vj))

As a quadratic form:

f>Lf =
1
2

∑
eij

wij(f(vi)− f(vj))2

L is symmetric and positive semi-definite.

L has n non-negative, real-valued eigenvalues:
0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

Radu Horaud Graph Laplacian Tutorial



The Laplacian of a 3D discrete surface (mesh)

A graph vertex vi is associated with a 3D point vi.

The weight of an edge eij is defined by the Gaussian kernel:

wij = exp
(
−‖vi − vj‖2/σ2

)
0 ≤ wmin ≤ wij ≤ wmax ≤ 1
Hence, the geometric structure of the mesh is encoded in the
weights.

Other weighting functions were proposed in the literature.
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The Laplacian of a cloud of points

3-nearest neighbor graph

ε-radius graph

KNN may guarantee that
the graph is connected
(depends on the
implementation)

ε-radius does not
guarantee that the graph
has one connected
component
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The Laplacian of a graph with one connected component

Lu = λu.

L1n = 0, λ1 = 0 is the smallest eigenvalue.

The one vector: 1n = (1 . . . 1)>.

0 = u>Lu =
∑n

i,j=1wij(u(i)− u(j))2.

If any two vertices are connected by a path, then
u = (u(1), . . . , u(n)) needs to be constant at all vertices such
that the quadratic form vanishes. Therefore, a graph with one
connected component has the constant vector u1 = 1n as the
only eigenvector with eigenvalue 0.
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A graph with k > 1 connected components

Each connected component has an associated Laplacian.
Therefore, we can write matrix L as a block diagonal matrix :

L =

 L1

. . .

Lk


The spectrum of L is given by the union of the spectra of Li.

Each block corresponds to a connected component, hence
each matrix Li has an eigenvalue 0 with multiplicity 1.

The spectrum of L is given by the union of the spectra of Li.

The eigenvalue λ1 = 0 has multiplicity k.
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The eigenspace of λ1 = 0 with multiplicity k

The eigenspace corresponding to λ1 = . . . = λk = 0 is
spanned by the k mutually orthogonal vectors:

u1 = 1L1

. . .
uk = 1Lk

with 1Li = (0000111110000)> ∈ Rn

These vectors are the indicator vectors of the graph’s
connected components.

Notice that 1L1 + . . .+ 1Lk
= 1n
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The Fiedler vector of the graph Laplacian

The first non-null eigenvalue λk+1 is called the Fiedler value.

The corresponding eigenvector uk+1 is called the Fiedler
vector.

The multiplicity of the Fiedler eigenvalue is always equal to 1.

The Fiedler value is the algebraic connectivity of a graph, the
further from 0, the more connected.

The Fidler vector has been extensively used for spectral
bi-partioning

Theoretical results are summarized in Spielman & Teng 2007:
http://cs-www.cs.yale.edu/homes/spielman/
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Eigenvectors of the Laplacian of connected graphs

u1 = 1n,L1n = 0.

u2 is the the Fiedler vector with multiplicity 1.

The eigenvectors form an orthonormal basis: u>i uj = δij .

For any eigenvector ui = (ui(v1) . . .ui(vn))>, 2 ≤ i ≤ n:

u>i 1n = 0

Hence the components of ui, 2 ≤ i ≤ n satisfy:

n∑
j=1

ui(vj) = 0

Each component is bounded by:

−1 < ui(vj) < 1
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Laplacian embedding: Mapping a graph on a line

Map a weighted graph onto a line such that connected nodes
stay as close as possible, i.e., minimize∑n

i,j=1wij(f(vi)− f(vj))2, or:

arg min
f
f>Lf with: f>f = 1 and f>1 = 0

The solution is the eigenvector associated with the smallest
nonzero eigenvalue of the eigenvalue problem: Lf = λf ,
namely the Fiedler vector u2.

For more details on this minimization see Golub & Van Loan
Matrix Computations, chapter 8 (The symmetric eigenvalue
problem).
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Example of mapping a graph on the Fiedler vector
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Laplacian embedding

Embed the graph in a k-dimensional Euclidean space. The
embedding is given by the n× k matrix F = [f1f2 . . .fk]
where the i-th row of this matrix – f (i) – corresponds to the
Euclidean coordinates of the i-th graph node vi.

We need to minimize (Belkin & Niyogi ’03):

arg min
f 1...f k

n∑
i,j=1

wij‖f (i) − f (j)‖2 with: F>F = I.

The solution is provided by the matrix of eigenvectors
corresponding to the k lowest nonzero eigenvalues of the
eigenvalue problem Lf = λf .
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Spectral embedding using the unnormalized Laplacian

Compute the eigendecomposition L = D−A.

Select the k smallest non-null eigenvalues λ2 ≤ . . . ≤ λk+1

λk+2 − λk+1 = eigengap.

We obtain the n× k matrix U = [u2 . . .uk+1]:

U =

 u2(v1) . . . uk+1(v1)
...

...
u2(vn) . . . uk+1(vn)


u>i uj = δij (orthonormal vectors), hence U>U = Ik.

Column i (2 ≤ i ≤ k + 1) of this matrix is a mapping on the
eigenvector ui.
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Examples of one-dimensional mappings

u2 u3

u4 u8
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Euclidean L-embedding of the graph’s vertices

(Euclidean) L-embedding of a graph:

X = Λ
− 1

2
k U> = [x1 . . . xj . . . xn]

The coordinates of a vertex vj are:

xj =


u2(vj)√

λ2
...

uk+1(vj)√
λk+1



Radu Horaud Graph Laplacian Tutorial



Justification for choosing the L-embedding

Both

the commute-time distance (CTD) and

the principal-component analysis of a graph (graph PCA)

are two important concepts; They allow to reason ”statistically” on
a graph. They are both associated with the unnormalized
Laplacian matrix.
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The commute-time distance

The CTD is a well known quantity in Markov chains;

It is the average number of (weighted) edges that it takes,
starting at vertex vi, to randomly reach vertex vj for the first
time and go back;

The CTD decreases as the number of connections between
the two nodes increases;

It captures the connectivity structure of a small graph volume
rather than a single path between the two vertices – such as
the shortest-path geodesic distance.

The CTD can be computed in closed form:

CTD2(vi, vj) = vol(G)‖xi − xj‖2
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The graph PCA

The mean (remember that
∑n

j=1 ui(vj) = 0):

x =
1
n

n∑
i=1

xj = Λ
− 1

2
k


∑n

j=1 u2(vj)
...∑n

j=1 uk+1(vj)

 =

 0
...
0


The covariance matrix:

S =
1
n

n∑
j=1

xjx
>
j =

1
n

XX> =
1
n

Λ
− 1

2
k U>UΛ

− 1
2

k =
1
n

Λ−1
k

The vectors u2, . . . ,uk+1 are the directions of maximum
variance of the graph embedding, with λ−1

2 ≥ . . . ≥ λ−1
k+1.
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Other Laplacian matrices

The normalized graph Laplacian (symmetric and semi-definite
positive):

Ln = D−
1
2 LD−

1
2 = I−D−

1
2 AD−

1
2

The transition matrix (allows an analogy with Markov chains):

Lt = D−1A

The random-walk graph Laplacian:

Lr = D−1L = I− Lt

These matrices are similar:

Lr = D−
1
2 D−

1
2 LD−

1
2 D

1
2 = D−

1
2 LnD

1
2
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Eigenvalues and eigenvectors of Ln and Lr

Lrw = λw ⇐⇒ Lw = λDw, hence:

Lr : λ1 = 0; w1 = 1

Lnv = λv. By virtue of the similarity transformation between
the two matrices:

Ln : λ1 = 0 v1 = D
1
2 1

More generally, the two matrices have the same eigenvalues:

0 = λ1 ≤ . . . ≤ λi . . . ≤ λn

Their eigenvectors are related by:

vi = D
1
2wi, ∀i = 1 . . . n
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Spectral embedding using the random-walk Laplacian Lr

The n× k matrix contains the first k eigenvectors of Lr:

W =
[
w2 . . . wk+1

]
It is straightforward to obtain the following expressions, where
d and D are the degree-vector and the degree-matrix:

w>i d = 0, ∀i, 2 ≤ i ≤ n

W>DW = Ik

The isometric embedding using the random-walk Laplacian:

Y = W> =
[
y1 . . . yn

]
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The normalized additive Laplacian

Some authors use the following matrix:

La =
1

dmax
(A + dmaxI−D)

This matrix is closely related to L:

La =
1

dmax
(dmaxI− L)

and we have:

Lau = µu ⇐⇒ Lu = λu, µ = 1− λ

dmax
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The graph partitioning problem

The graph-cut problem: Partition the graph such that:
1 Edges between groups have very low weight, and
2 Edges within a group have high weight.

cut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai) with W (A,B) =
∑

i∈A,j∈B
wij

Ratio cut: (Hagen & Kahng 1992)

RatioCut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai)
|Ai|

Normalized cut: (Shi & Malik 2000)

NCut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai)
vol(Ai)
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What is spectral clustering?

Both ratio-cut and normalized-cut minimizations are NP-hard
problems

Spectral clustering is a way to solve relaxed versions of these
problems:

1 The smallest non-null eigenvectors of the unnormalized
Laplacian approximate the RatioCut minimization criterion,
and

2 The smallest non-null eigenvectors of the random-walk
Laplacian approximate the NCut criterion.
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Spectral clustering using the random-walk Laplacian

For details see (von Luxburg ’07)

Input: Laplacian Lr and the number k of clusters to compute.

Output: Cluster C1, . . . , Ck.

1 Compute W formed with the first k eigenvectors of the
random-walk Laplacian.

2 Determine the spectral embedding Y = W>

3 Cluster the columns yj , j = 1, . . . , n into k clusters using the
K-means algorithm.
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K-means clustering

See Bishop’2006 (pages 424–428) for more details.

What is a cluster: a group of points whose inter-point distance
are small compared to distances to points outside the cluster.

Cluster centers: µ1, . . . ,µk.

Goal: find an assignment of points to clusters as well as a set
of vectors µi.

Notations: For each point yj there is a binary indicator
variable rji ∈ {0, 1}.
Objective: minimize the following distorsion measure:

J =
n∑
j=1

k∑
i=1

rji‖yj − µi‖2
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The K-means algorithm

1 Initialization: Choose initial values for µ1, . . . ,µk.

2 First step: Assign the j-th point to the closest cluster center:

rji =
{

1 if i = arg minl ‖yj − µl‖2
0 otherwise

3 Second Step: Minimize J to estimate the cluster centers:

µi =

∑n
j=1 rjiyj∑n
j=1 rji

4 Convergence: Repeat until no more change in the
assignments.
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Spectral Clustering Analysis : The Ideal Case

λ1 = λ2 = λ3 = 0
w1,w2,w3 form an
orthonormal basis.

The connected components
collapse to
(100), (010), (001).

Clustering is trivial in this
case.

W =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1



Y =

 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1


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Spectral Clustering Analysis : The Perturbed Case

See (von Luxburg ’07) for a
detailed analysis.

The connected components
are no longer disconnected,
but they are only connected
by few edges with low
weight.

The Laplacian is a perturbed
version of the ideal case.

Choosing the first k nonzero
eigenvalues is easier the
larger the eigengap between
λk+1 and λk+2.

The fact that the first k
eigenvectors of the
perturbed case are
approximately piecewise
constant depends on
|λk+2 − λk+1|.
Choosing k is a crucial issue.
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Mesh segmentation using spectral clustering

K=6 K=6 K=9 K=6
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Conclusions

Spectral graph embedding based on the graph Laplacian is a
very powerful tool;

Allows links between graphs and Riemannian manifolds

There are strong links with Markov chains and random walks

It allows clustering (or segmentation) under some conditions

We (PERCEPTION group) use it for shape matching, shape
segmentation, shape recognition, etc.
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