
Introduction to theory

of computation

Tom Carter

http://astarte.csustan.edu/˜ tom/SFI-CSSS

Complex Systems Summer School

June, 2005
1

http://astarte.csustan.edu/~tom/SFI-CSSS

Our general topics: ←

} Symbols, strings and languages

} Finite automata

} Regular expressions and languages

} Markov models

} Context free grammars and languages

} Language recognizers and generators

} The Chomsky hierarchy

} Turing machines

} Computability and tractability

} Computational complexity

} References

2

The quotes �

} No royal road

} Mathematical certainty

} I had a feeling once about Mathematics

} Terminology (philosophy and math)

} Rewards

To topics ←

3

Introduction ←

What follows is an extremely abbreviated look

at some of the important ideas of the general

areas of automata theory, computability, and

formal languages. In various respects, this

can be thought of as the elementary

foundations of much of computer science.

The area also includes a wide variety of tools,

and general categories of tools . . .

4

Symbols, strings and
languages ←

• The classical theory of computation

traditionally deals with processing an

input string of symbols into an output

string of symbols. Note that in the

special case where the set of possible

output strings is just {‘yes’, ‘no’}, (often

abbreviated {T, F} or {1, 0}), then we

can think of the string processing as

string (pattern) recognition.

We should start with a few definitions.

The first step is to avoid defining the

term ‘symbol’ – this leaves an open slot

to connect the abstract theory to the

world . . .

We define:

1. An alphabet is a finite set of symbols.

5

2. A string over an alphabet A is a finite
ordered sequence of symbols from A.
Note that repetitions are allowed. The
length of a string is the number of
symbols in the string, with repetitions
counted. (e.g., |aabbcc| = 6)

3. The empty string, denoted by ε, is the
(unique) string of length zero. Note
that the empty string ε is not the same
as the empty set ∅.

4. If S and T are sets of strings, then
ST = {xy| x ∈ S and y ∈ T}

5. Given an alphabet A, we define

A0 = {ε}
An+1 = AAn

A∗ =
∞⋃

n=0

An

6. A language L over an alphabet A is a
subset of A∗. That is, L ⊂ A∗.

6

• We can define the natural numbers, N, as

follows:

We let

0 = ∅
1 = {∅}
2 = {∅, {∅}}

and in general

n + 1 = {0,1,2, . . . , n}.
Then

N = {0,1,2, . . .}.

• Sizes of sets and countability:

1. Given two sets S and T, we say that

they are the same size (|S| = |T|) if

there is a one-to-one onto function

f : S→ T.

2. We write |S| ≤ |T| if there is a

one-to-one (not necessarily onto)

function f : S→ T.
7

3. We write |S| < |T| if there is a

one-to-one function f : S→ T, but

there does not exist any such onto

function.

4. We call a set S

(a) Finite if |S| < |N|

(b) Countable if |S| ≤ |N|

(c) Countably infinite if |S| = |N|

(d) Uncountable if |N| < |S|.

5. Some examples:

(a) The set of integers

Z = {0,1,−1,2,−2, . . .} is countable.

(b) The set of rational numbers

Q = {p/q | p, q ∈ Z, q 6= 0} is

countable.

8

(c) If S is countable, then so is SxS, the
cartesian product of S with itself,
and so is the general cartesian
product Sn for any n <∞.

(d) For any nonempty alphabet A, A∗ is
countably infinite.

Exercise: Verify each of these
statements.

6. Recall that the power set of a set S is
the set of all subsets of S:

P(S) = {T | T ⊂ S}.
We then have the fact that for any set
S,

|S| < |P(S)|.

Pf: First, it is easy to see that

|S| ≤ |P(S)|
since there is the one-to-one function
f : S→ P(S) given by f(s) = {s} for
s ∈ S.

9

On the other hand, no function

f : S→ P(S) can be onto. To show

this, we need to exhibit an element of

P(S) that is not in the image of f . For

any given f , such an element (which

must be a subset of S) is

Rf = {x ∈ S | x /∈ f(x)}.

Now suppose, for contradiction, that

there is some s ∈ S with f(s) = Rf .

There are then two possibilities: either

s ∈ f(s) = Rf or s /∈ f(s) = Rf . Each

of these leads to a contradiction:

If s ∈ f(s) = Rf , then by the definition

of Rf , s /∈ f(s). This is a contradiction.

If s /∈ f(s) = Rf , then by the definition

of Rf , s ∈ Rf = f(s). Again, a

contradiction.

Since each case leads to a

contradiction, no such s can exist, and

hence f is not onto. QED

10

• From this, we can conclude for any

countably infinite set S, P(S) is

uncountable. Thus, for example, P(N) is

uncountable. It is not hard to see that the

set of real numbers, R, is the same size as

P(N), and is therefore uncountable.

Exercise: Show this. (Hint: show that R
is the same size as

(0,1) = {x ∈ R | 0 < x < 1}, and then use

the binary representation of real numbers

to show that |P(N)| = |(0,1)|).

• We can also derive a fundamental

(non)computability fact:

There are languages that cannot be

recognized by any computation. In other

words, there are languages for which

there cannot exist any computer

algorithm to determine whether an

arbitrary string is in the language or not.

11

To see this, we will take as given that any

computer algorithm can be expressed as a

computer program, and hence, in

particular, can be expressed as a finite

string of ascii characters. Therefore, since

ASCII∗ is countably infinite, there are at

most countably many computer

algorithms/programs. On the other hand,

since a language is any arbitrary subset of

A∗ for some alphabet A, there are

uncountably many languages, since there

are uncountably many subsets.

12

No royal road �

There is no royal road to logic, and really

valuable ideas can only be had at the price of

close attention. But I know that in the

matter of ideas the public prefer the cheap

and nasty; and in my next paper I am going

to return to the easily intelligible, and not

wander from it again.

– C.S. Peirce in How to Make Our Ideas

Clear, 1878

13

Finite automata ←

• This will be a quick tour through some of

the basics of the abstract theory of

computation. We will start with a

relatively straightforward class of

machines and languages – deterministic

finite automata and regular languages.

In this context when we talk about a

machine, we mean an abstract rather

than a physical machine, and in general

will think in terms of a computer

algorithm that could be implemented in a

physical machine. Our descriptions of

machines will be abstract, but are

intended to be sufficiently precise that an

implementation could be developed.

14

• A deterministic finite automaton (DFA)
M = (S,A, s0, δ,F) consists of the
following:

S, a finite set of states,

A, an alphabet,

s0 ∈ S, the start state,

δ : SxA→ S, the transition function, and

F ⊂ S, the set of final (or accepting)
states of the machine.

We think in terms of feeding strings from
A∗ into the machine. To do this, we
extend the transition function to a
function

δ̂ : SxA∗ → S

by

δ̂(s, ε) = s,

δ̂(s, xa) = δ̂(δ(s, a), x).
15

We can then define the language of the
machine by

L(M) = {x ∈ A∗ | δ̂(s0, x) ∈ F}.

In other words, L(M) is the set of all
strings in A∗ that move the machine via
its transition function from the start state
s0 into one of the final (accepting) states.

We can think of the machine M as a
recognizer for L(M), or as a string
processing function

fM : A∗ → {1,0}

where fM(x) = 1 exactly when x ∈ L(M).

• There are several generalizations of DFAs
that are useful in various contexts. A first
important generalization is to add a
nondeterministic capability to the
machines. A nondeterministic finite
automaton (NFA) M = (S,A, s0, δ,F) is
the same as a DFA except for the
transition function:

16

S, a finite set of states,

A, an alphabet,

s0 ∈ S, the start state,

δ : SxA→ P(S), the transition function,

F ⊂ S, the set of final (or accepting)

states of the machine.

For a given input symbol, the transition

function can take us to any one of a set

of states.

We extend the transition function to

δ̂ : SxA∗ → P(S) in much the same way:

δ̂(s, ε) = s,

δ̂(s, xa) =
⋃

r∈δ(s,a)

δ̂(r, x).

We define the language of the machine by

L(M) = {x ∈ A∗ | δ̂(s0, x) ∩ F 6= ∅}.
17

A useful fact is that DFAs and NFAs

define the same class of languages. In

particular, given a language L, we have

that L = L(M) for some DFA M if and

only if L = L(M′) for some NFA M′.

Exercise: Prove this fact.

In doing the proof, you will notice that if

L = L(M) = L(M′) for some DFA M and

NFA M′, and M′ has n states, then M

might need to have as many as 2n states.

In general, NFAs are relatively easy to

write down, but DFAs can be directly

implemented.

• Another useful generalization is to allow

the machine to change states without any

input (often called ε-moves). An NFA

with ε-moves would be defined similarly to

an NFA, but with transition function

δ : Sx(A ∪ {ε})→ P(S).
18

Exercise: What would an appropriate
extended transition function δ̂ and
language L(M) be for an NFA with
ε-moves?

Exercise: Show that the class of
languages defined by NFAs with ε-moves
is the same as that defined by DFAs and
NFAs.

Here is a simple example. By convention,
the states in F are double circled. Labeled
arrows indicate transitions. Exercise:
what is the language of this machine?

19

Regular expressions and
languages ←

• In the preceding section we defined a
class of machines (Finite Automata) that
can be used to recognize members of a
particular class of languages. It would be
nice to have a concise way to describe
such a language, and furthermore to have
a convenient way to generate strings in
such a language (as opposed to having to
feed candidate strings into a machine,
and hoping they are recognized as being
in the language . . .).

Fortunately, there is a nice way to do this.
The class of languages defined by Finite
Automata are called Regular Languages
(or Regular Sets of strings). These
languages are described by Regular
Expressions. We define these as follows.
We will use lower case letters for regular
expressions, and upper case for regular
sets.

20

• Definition: Given an alphabet A, the

following are regular expressions / regular

sets over A:

Expressions : Sets :
∅ ∅
ε {ε}

a, for a ∈ A {a}, for a ∈ A

If r and s are If R and S are
regular, then regular, then

so are : so are :

r + s R ∪ S
rs RS
r∗ R∗

and nothing else is regular.

We say that the regular expression on the

left represents the corresponding regular

set on the right. We say that a language

is a regular language if the set of strings

in the language is a regular set.

21

A couple of examples:

• The regular expression

(00 + 11)∗(101 + 110)

represents the regular set (regular

language)

{101,110,00101,00110,11101,11110,

0000101,0000110,0011101,0011110, . . .}.

Exercise: What are some other strings in

this language? Is 00110011110 in the

language? How about 00111100101110?

• A protein motif pattern, described as a

(slight variation of our) regular expression.

22

• It is a nice fact that regular languages are

exactly the languages of the finite

automata defined in the previous section.

In particular, a language L is a regular set

(as defined above) if and only if L = L(M)

for some finite automaton M.

The proof of this fact is relatively

straightforward.

For the first half, we need to show that if

L is a regular set (in particular, if it is

represented by a regular expression r),

then L = L(M) for some finite automaton

M. We can show this by induction on the

size of the regular expression r. The basis

for the induction is the three simplest

cases: ∅, {ε}, and {a}. (Exercise: find

machines for these three cases.) We then

show that, if we know how to build

machines for R and S, then we can build

machines for R ∪ S, RS, and R∗.
(Exercise: Show how to do these three –

use NFAs with ε-moves.)
23

For the second half, we need to show that

if we are given a DFA M, then we can

find a regular expression (or a regular set

representation) for L(M). We can do this

by looking at sets of strings of the form

Rk
ij = {x ∈ A∗ | x takes M from state si to

state sj without going through (into and

out of) any state sm with m ≥ k}.

Note that if the states of M are

{s0, s1, . . . , sn−1}, then

L(M) =
⋃

sj∈F
Rn

0j.

We also have

R0
ij = {a ∈ A | δ(si, a) = sj}

(for i = j, we also get ε . . .),

and, for k ≥ 0,

Rk+1
ij = Rk

ij ∪Rk
ik(R

k
kk)
∗Rk

kj.

Exercise: Verify, and finish the proof.

24

Mathematical certainty �

I wanted certainty in the kind of way in which

people want religious faith. I thought that

certainty is more likely to be found in

mathematics than elsewhere. But I discovered

that many mathematical demonstrations,

which my teachers expected me to accept,

were full of fallacies, and that, if certainty

were indeed discoverable in mathematics, it

would be in a new field of mathematics, with

more solid foundations than those that had

hitherto been thought secure. But as the

work proceeded, I was continually reminded

of the fable about the elephant and the

tortoise. Having constructed an elephant

upon which the mathematical world could

rest, I found the elephant tottering, and

proceeded to construct a tortoise to keep the

elephant from falling. But the tortoise was no

more secure than the elephant, and after

some twenty years of very arduous toil, I
25

came to the conclusion that there was

nothing more that I could do in the way of

making mathematical knowledge indubitable.

– Bertrand Russel in Portraits from Memory

26

Markov models ←

• An important related class of systems are
Markov models (often called Markov
chains). These models are quite similar to
finite automata, except that the
transitions from state to state are
probabilistically determined, and typically
we do not concern ourselves with final or
accepting states. Often, in order to keep
track of the (stochastic) transitions the
system is making, we have the system
emit a symbol, based either on which
transition occurred, or which state the
system arrived in. These machines take
no input (except whatever drives the
probabilities), but do give output strings.

Markov models can often be thought of
as models for discrete dynamical systems.
We model the system as consisting of a
finite set of states, with a certain
probability of transition from a state to
any other state.

27

The typical way to specify a Markov

model is via a transition matrix:

T =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

pn1 pn2 · · · pnn


where 0 ≤ pij ≤ 1, and

∑
j pij = 1.

Each entry pij tells the probability the

system will go from state si to state sj in

the next time step.

The transition probabilities over two steps

are given by T2. Over n steps, the

probabilities are given by Tn.

Exercises: Suppose we run the system for

very many steps. How might we estimate

the relative probabilities of being in any

given state?

What information about the system might

we get from eigenvalues and eigenvectors

of the matrix T?
28

• A couple of examples:

First, a generic Markov model for DNA

sequences:

An outline for a more complex model, of a

type often called a hidden Markov model.

29

I had a feeling once about
Mathematics �

I had a feeling once about Mathematics -

that I saw it all. Depth beyond depth was

revealed to me - the Byss and Abyss. I saw -

as one might see the transit of Venus or even

the Lord Mayor’s Show - a quantity passing

through infinity and changing its sign from

plus to minus. I saw exactly why it happened

and why the tergiversation was inevitable but

it was after dinner and I let it go.

– Sir Winston Churchill

30

Context free grammars
and languages ←

• While regular languages are very useful,

not every interesting language is regular.

It is not hard to show that even such

simple languages as balanced parentheses

or palindromes are not regular. (Here is

probably a good place to remind ourselves

again that in this context, a language is

just a set of strings . . .)

A more general class of languages is the

context free languages. A straightforward

way to specify a context free language is

via a context free grammar. Context free

grammars can be thought of as being for

context free languages the analogue of

regular expressions for regular languages.

They provide a mechanism for generating

elements on the language.

31

• A context free grammar G = (V, T, S, P)
consists of a two alphabets V and T
(called variables and terminals,
respectively), an element S ∈ V called the
start symbol, and a finite set of
production rules P. Each production rule
is of the form A→ α, where A ∈ V and
α ∈ (V ∪T)∗.

We can use such a production rule to
generate new strings from old strings. In
particular, if we have the string
γAδ ∈ (V ∪T)∗ with A ∈ V, then we can
produce the new string γαδ. The
application of a production rule from the
grammar G is often written α⇒

G
β, or just

α⇒ β if the grammar is clear. The
application of 0 or more production rules
one after the other is written α

∗⇒ β.

The language of the grammar G is then

L(G) = {α ∈ T∗ | S ∗⇒ α}.
The language of such a grammar is called
a context free language.

32

• Here, as an example, is the language
consisting of strings of balanced
parenthese. Note that we can figure out
which symbols are variables, since they all
occur on the left side of some production.

S → R

R → ε

R → (R)

R → RR

Exercise: Check this. How would we
modify the grammar if we wanted to
include balanced ‘[]’ and ‘{}’ pairs also?

• Here is a palindrome language over the
alphabet T = {a, b}:

S → R

R → ε | a | b
R → aRa | bRb

(note the ‘|’ to indicate alternatives . . .)

33

Exercise: What would a grammar for
simple algebraic expressions (with
terminals T = {x, y, +, -, *, (,)})
look like?

• A couple of important facts are that any
regular language is also context free, but
there are context free languages that are
not regular.

Exercise: How might one prove these
facts?

• Context free grammars can easily be used
to generate strings in the corresponsing
language. We would also like to have
machines to recognize such languages.
We can build such machines through a
slight generalization of finite automata.
The generalization is to add a ‘pushdown
stack’ to our finite automata. These
more powerful machines are called
pushdown automata, or PDAs . . .

34

• Here is an example – this is a grammar

for the RNP-1 motif from an earlier

example. This also gives an example of

what a grammar for a regular language

might look like. Question: what features

of this grammar reflect the fact that it is

for a regular language?

RNP-1 motif grammar

S → rW1 | kW1

W1 → gW2

W2 → [afilmnqstvwy]W3

W3 → [agsci]W4

W4 → fW5 | yW5

W5 → [liva]W6

W6 → [acdefghiklmnpqrstvwy]W7

W7 → f | y | m

35

• Could we build a context free grammar for
the primary structure of this tRNA that
would reflect the secondary structure?
What features could be variable, and
which must be fixed in order for the
tRNA to function appropriately in context?

36

Terminology (philosophy
and math) �

Somebody once said that philosophy is the

misuse of a terminology which was invented

just for this purpose. In the same vein, I

would say that mathematics is the science of

skillful operations with concepts and rules

invented just for this purpose.

– Eugene Wigner

37

Language recognizers and
generators ←

• There is a nice duality between the

processes of generating and recognizing

elements of a language. Often what we

want is a (reasonably efficient) machine

for recognizing elements of the language.

These machines are sometimes called

parsers, or syntax checkers, or lexical

analyzers. If you have a language

compiler (for C++, for example),

typically a first pass of the compiler does

this syntax checking.

The other thing we are likely to want is a

concise specification of the syntax rules

for the language. These specifications are

often called grammars. We have looked

briefly at context free grammars. A more

general form of grammars are the context

sensitive grammars.
38

• A grammar for a language gives a concise

specification of the pattern a string must

reflect in order to be part of the

language. We have described grammars

as generators of the languages, in the

sense that given the grammar, we can

(ordinarily) generate strings in the

language in a methodical way.

In practice, we often use grammars as

guides in generating language strings to

accomplish particular tasks. When we

write a C++ program, the grammar tells

us which symbols are allowed next in our

program. We choose the particular

symbol – we generate the string,

constrained by the grammar.

Another thing we would like our grammar

to do is provide a mechanism for

constructing a corresponding language

recognizing machine. This process has

largely been automated for classes of
39

languages like the regular, context free,

and context sensitive languages. For unix

people, the ‘re’ in ‘grep’ stands for

‘regular expression,’ and the tool ‘lex’ is a

lexical analyzer constructor.

• Of course by now you are wondering

about the relationships between languages

and meaning . . .

In the context of at least some computer

languages, there is a way we can begin to

approach this question. We can say that

the meaning of a language element is the

effect it has in the world (in particular, in

a computer when the program is run).

Thus, for example, in C++, the

statement (language element)

j = 5;

has the effect of finding the memory

location associated with the name ‘j’, and

updating that location to the value 5.
40

There are some useful tools, such as

‘yacc’ (yet another compiler compiler)

(the Gnu public license version of this is

called Bison . . .) that do a decent job of

automating the process of carrying out

these linkages between language elements

and hardware effects . . .

Perhaps another day I’ll write another

section (or another piece) on ‘meaning.’

For now, let me just leave this with

Wittgenstein’s contention that meaning is

use . . .

41

Rewards �

Down the line, you can find all kinds of

constraints and openings for freedom,

limitations on violence, and so on that can be

attributed to popular dissidence to which

many individuals have contributed, each in a

small way. And those are tremendous

rewards. There are no President’s Medals of

Honour, or citations, or front pages in the

New York Review of Books. But I don’t think

those are much in the way of genuine

rewards, to tell you the truth. Those are the

visible signs of prestige; but the sense of

community and solidarity, of working together

with people whose opinions and feelings really

matter to you... that’s much more of a

reward than the institutionally-accepted ones.

– Noam Chomsky

42

The Chomsky hierarchy←

• The tools and techniques we have been

talking about here are often used to

develop a specialized language for a

particular task.

A potentially more interesting (and likely

more difficult) task is to work with an

existing or observed language (or

language system) and try to develop a

grammar or recognizer for the language.

One typical example of this might be to

work with a natural (human?) language

such as English or Spanish.

In a more general form, we would be

looking at any system that can be

represented by strings of symbols, and we

would attempt to discover and represent

patterns and structures within the

collection of observed strings (i.e., within

the language of the system).
43

• In the 1950’s, linguists applied the

approaches of formal language theory to

human languages. Noam Chomsky in

particular looked at the relative power of

various formal language systems (i.e., the

range of languages that could be specified

by various formal systems). He is typically

credited with establishing relationships

among various formal language systems –

now known as the Chomsky Hierarchy.

Chomsky and other linguists had observed

that very young children acquire language

fluency much more rapidly and easily than

one would expect from typical “learning

algorithms,” and therefore he

hypothesized that the brain must embody

some sort of “general language machine”

which would, during early language

exposure, be particularized to the specific

language the child acquired. He therefore

studied possible “general language

machines.” His hope was that by
44

characterizing various such machine types,
linguists would be able to develop abstract
formal grammars for human languages,
and thus understand much more about
languages in general and in particular.

In many respects, this project is still in
process. On the next page is a slightly
generalized outline of the classical
Chomsky Hierarchy of formal languages.
Human languages don’t fit neatly into any
one of the categories – at the very least,
human languages are context sensitive,
but with additional features. Also,
though, since Chomsky’s work in the
1950s, many more language categories
have been identified (probably in the
hundreds by now).

An interesting (and relatively deep)
question is whether it fully makes sense to
expect there to be a concise formal
grammar for a particular human language
such as English – and what exactly that
would mean . . .

45

Languages Machines

Regular DFA or NFA
Deterministic Deterministic push-down

context free automata
Context free Nondeterministic PDA
Context Linear bounded automata

sensitive (Turing, bounded tape)
Recursive Turing machines that

halt on every input
Recursively General Turing machines

enumerable

46

• For purposes of research, it is worthwhile

to be aware of the wide variety of formal

language types that have been studied

and written about. Often, though, it

makes sense to restrict one’s attention to

a particular language class, and see which

portions of the problem at hand are

amenable to that class.

For example, the regular languages are

very concise, easy to work with, and many

relevant tools and techniques have been

developed. In particular, there has been

much research on Markov models. It thus

often makes sense to try to develop a

regular or Markov approach to your

problem, such as the work by Jim

Crutchfield on ε-machines . . .

Another important example (as indicated

above) is work that has been done

appliying hidden Markov models to the

analysis of genome sequence problems . . .

47

Turing machines ←

• During the 1930s, the mathematician
Alan Turing worked on the general
problem of characterizing computable
mathematical functions. In particular, he
started by constructing a precise definition
of “computability.” The essence of his
definition is the specification of a general
computing machine – what is today called
the Turing machine.

Once having specified a particular
definition of “computability,” Turing was
able to prove that there are mathematical
functions that are not computable. Of
course, one cannot “prove” that a
definition itself is “correct,” but can only
observe that it is useful for some
particular purposes, and maybe that it
seems to do a good job of capturing
essential features of some pre-existing
general notions or intuitions. See, though,
the Church-Turing thesis . . .

48

• The basic elements of the Turing machine
are a (potentially) infinite “tape” on
which symbols can be written (and
re-written), and a finite state control with
a read/write head for accessing and
updating the tape. Turing used as his
intuitive model a mathematician working
on a problem. The mathematician (finite
state control) would read a page (the
symbol in one cell on the tape), think a
bit (change state), possibly rewrite the
page (change the symbol in the cell), and
then turn either back or forward a page.

49

• More formally, a Turing machine

T = (S, A, δ, s0, b, F) consists of:

S = a finite set of states,

A = an alphabet,

δ : Sx(A ∪ {b})→ Sx(A ∪ {b})x{L,R},
the transition function,

s0 ∈ S, the start state,

b, marking unused tape cells, and

F ⊂ S, halting and/or accepting states.

To run the machine, it is first set up with

a finite input string (from A∗) written on

the tape (and the rest of the tape

initialized to the blank symbol ’b’). The

machine is started in the start state (s0)

with its read/write head pointing at the

first symbol in the input string. The

machine then follows the instructions of

the δ function – depending on its current

state and the symbol being read in the

current tape cell, the machine changes

state, writes a (possibly) new symbol in
50

the current tape cell, and then moves the

read/write head one cell either left or

right. The machine continues processing

until it enters a halting state (in F). Note

that it is possible that the machine will go

into an infinite loop and never get to a

halting state . . .

There are several generic ways to think

about what computation is being done by

the machine:

1. Language recognizer: an input string

from A∗ is in the language L(T) of the

machine if the machine enters a

halting (accepting) state. The string is

not in the language otherwise.

Languages of such machines are called

recursively enumerable languages.

2. Language recognizer (special): a

subset of the halting states are

declared to be ‘accepting’ states (and
51

the rest of the halting state are

‘rejecting’ states). If the machine halts

in an accepting state, the string is in

the language L(T). If the machine

halts in a rejecting state, or never

halts, the string is not in the language.

In this special case, there are some

particular machines that enter some

halting state for every input string in

A∗. Languages of these particular

machines which halt on every input are

called recursive languages.

3. String processor: given an input string,

the result of the computation is the

contents of the tape when the machine

enters a halting state. Note that it may

be that the machine gives no result for

some input strings (i.e., never enters a

halting state). For these machines, the

partial function computed by the

machine is a partial recursive function.

52

4. String processor (special): If the

machine halts on every input string,

the function computed by the machine

is a recursive function.

• Turing proved a number of important

facts about such machines. One of his

deepest insights was that it is possible to

encode a Turing machine as a finite string

of symbols. Consider a machine

T = (S, A, δ, s0, b, F). Each of S, A, and F

is a finite set, and thus can be encoded as

a single number (the number of elements

in the set). We can assume that s0 is the

first of the states, so we don’t need to

encode that. We can assume (possibly by

reordering) that the states F are at the

end of the list of states, so we only need

to know how many there are. The

symbols in A are arbitrary, so we only

need to know how many there are. The

53

blank symbol b can be encoded as though

it were an extra last symbol in A. The

only slightly tricky part is the transition

function δ, but we can think of δ as being

a (finite) set of ordered 5-tuples

(si, ai, sj, aj, d) where d (direction) is either

L or R. There will be |S| ∗ (|A|+ 1) such

5-tuples. Thus, an example Turing

machine might be encoded by

(3,2,1,

(0,0,0,1, R), (0,1,2,1, L), (0,2,2,2, R),

(1,0,0,0, R), (1,1,1,0, R), (1,2,2,2, L),

(2,0,0,1, L), (2,1,2,0, R), (2,2,1,1, R))

where there are three states, two

alphabet symbols, and one halting state

(state 2, but not states 0 or 1). We have

encoded b as ‘2’.

Exercise: Draw the finite state control for

this machine. (Can you figure out what

the language of this machine is?)

54

• Turing’s next insight was that since we
can encode a machine as a finite string of
symbols, we could use that string of
symbols as the input to some other
Turing machine. In fact, if we are careful,
we can construct a Universal Turing
Machine – a Turing machine that can
simulate any other Turing machine!
Turing gave the specifications of such a
machine. We can call the universal Turing
machine UTM.

In particular, if we have a specific Turing
machine T and a specific input string σ
for the machine T , we work out the
encoding for the machine T in the
alphabet symbols of the UTM, and the
encoding of the string σ in the alphabet
symbols of the UTM, concatenate the
two strings together, and use that as the
input string to the UTM. The UTM then
shuttles back and forth between the
encoding of the string σ and the
‘instructions’ in the encoding of T ,
simulating the computation of T on σ.

55

• Turing proved a variety of important facts

about Turing machines. For example, he

proved that there cannot be a does-it-halt

machine – that is, the question of

whether or not a given Turing machine

halts on a given input is noncomputable.

No machine can be guaranteed to halt

giving us a yes/no answer to this question

for all machines and strings. In effect, the

only sure way to tell if a given Turing

machine halts on a given string is to run

it – of course, the problem is that if it

doesn’t halt (goes into an infinite loop),

you can’t know for sure it’s in an infinite

loop until you wait forever!

In fact, it turns out that almost all

interesting questions about Turing

machines (in fact, essentially any

non-trivial question) is noncomputable (in

the language of art, these are called

undecidable questions). In effect, in trying

to answer any non-trivial question, you
56

might fall into an infinite loop, and there

is no sure way to know when you are in

an infinite loop!

• Some other important theoretical work

being done almost the same time as

Turing’s work was Kurt Gödel’s work on

the incompleteness of logical systems.

Gödel showed that in any (sufficiently

general) formal logical system, there are

true statements that are not provable

within the system.

If we put Turing’s results together with

Gödel’s, we can say in effect that Truth is

a noncomputable function.

Mathematically, Turing’s and Gödel’s

fundamental results are equivalent to each

other. You can’t be guaranteed to know

what’s true, and sometimes the best you

can do is run the simulation and see what

happens . . .

57

Computability and
tractability ←

• We have already observed that there are
some problems that are not computable –
in particular, we showed the existence of
languages for which there cannot be an
algorithmic recognizer to determine which
strings are in the language. Another
important example of a noncomputable
problem is the so-called halting problem.
In simple terms, the question is, given a
computer program, does the program
contain an infinite loop? There cannot be
an algorithm that is guaranteed to
correctly answer this question for all
programs.

More practically, however, we often are
interested in whether a program can be
executed in a ‘reasonable’ length of time,
using a reasonable amount of resources
such as system memory.

58

• We can generally categorize

computational algorithms according to

how the resources needed for execution of

the algorithm increase as we increase the

size of the input. Typical resources are

time and (storage) space. In different

contexts, we may be interested in

worst-case or average-case performance

of the algorithm. For theoretical

purposes, we will typically be interested in

large input sets . . .

59

• A standard mechanism for comparing the

growth of functions with domain N is

“big-Oh.” One way of defining this

notion is to associate each function with

a set of functions. We can then compare

algorithms by looking at their “big-Oh”

categories.

• Given a function f , we define O(f) by:

g ∈ O(f) ⇐⇒

there exist c > 0 and N ≥ 0 such that

|g(n)| ≤ c|f(n)| for all n ≥ N .

• We further define θ(f) by:

g ∈ θ(f) iff g ∈ O(f) and f ∈ O(g).

60

• In general we will consider the run-time of

algorithms in terms of the growth of the

number of elementary computer

operations as a function of the number of

bits in the (encoded) input. Some

important categories – an algorithm’s

run-time f is:

1. Logarithmic if f ∈ θ(log(n)).

2. Linear if f ∈ θ(n).

3. Quadratic if f ∈ θ(n2).

4. Polynomial if f ∈ θ(P (n)) for some

polynomial P (n).

5. Exponential if f ∈ θ(bn) for some

constant b > 1.

6. Factorial if f ∈ θ(n!).

61

• Typically we say that a problem is

tractable if (we know) there exists an

algorithm whose run-time is (at worst)

polynomial that solves the problem.

Otherwise, we call the problem

intractable.

• There are many problems which have the

interesting property that if someone (an

oracle?) provides you with a solution to

the problem, you can tell in polynomial

time whether what they provided you

actually is a solution. Problems with this

property are called Non-deterministically

Polynomial, or NP, problems. One way to

think about this property is to imagine

that we have arbitrarily many machines

available. We let each machine work on

one possible solution, and whichever

machine finds the (a) solution lets us

know.

62

• There are some even more interesting NP

problems which are universal for the class

of NP problems. These are called

NP-complete problems. A problem S is

NP-complete if S is NP and, there exists

a polynomial time algorithm that allows

us to translate any NP problem into an

instance of S. If we could find a

polynomial time algorithm to solve a

single NP-complete problem, we would

then have a polynomial time solution for

each NP problem.

63

• Some examples:

1. Factoring a number is NP. First, we

recognize that if M is the number we

want to factor, then the input size m is

approximately log(M) (that is, the

input size is the number of digits in the

number). The elementary school

algorithm (try dividing by each number

less than
√

M) has run-time

approximately 10
m
2 , which is

exponential in the number of digits.

On the other hand, if someone hands

you two numbers they claim are

factors of M , you can check by

multiplying, which takes on the order

of m2 operations.

It is worth noting that there is a

polynomial time algorithm to

determine whether or not a number is

prime, but for composite numbers, this

algorithm does not provide a
64

factorization. Factoring is a

particularly important example because

various encryption algorithms such as

RSA (used in the PGP software, for

example) depend for their security on

the difficulty of factoring numbers with

several hundred digits.

65

2. Satisfiability of a boolean expression is

NP-complete. Suppose we have n

boolean variables {b1, b2, . . . , bn} (each

with the possible values 0 and 1). We

can form a general boolean expression

from these variables and their

negations:

f(b1, b2, . . . , bn) =
∧
k

(
∨

i,j≤n

(bi,∼ bj)).

A solution to such a problem is an

assignment of values 0 or 1 to each of

the bi such that f(b1, b2, . . . , bn) =1.

There are 2n possible assignments of

values. We can check an individual

possible solution in polynomial time,

but there are exponentially many

possibilities to check. If we could

develop a feasible computation for this

problem, we would have resolved the

traditional P
?
=NP problem . . .

66

Computational complexity
←

• Suppose we have some system we are

observing for a fixed length of time. We

can imagine that we have set up a

collection of instruments (perhaps just

our eyes and ears), and are encoding the

output of our instruments as a finite

string of bits (zeros and ones). Let’s call

the string of bits β. Can we somehow

determine (or meaningfully assign a

numerical value of) the complexity of the

system, just by looking at the string β?

• One approach is to calculate the

information entropy of β. This approach,

unfortunately, carries with it the dilemma

that any entropy calculation will have to

be relative to a probability model for the

system, and there will be many possible
67

probability models we could use. For
example, if we use as our model an
unbiased coin, then β is a possible
outcome from that model (i.e., a priori we
cannot exclude the random model), and
the information entropy of β is just the
number of bits in β. (What this really
says is that the upper bound on the
information entropy of β is the number of
bits . . .) On the other hand, there is a
probability model where β has probability
one, and all other strings have probability
zero. Under this model, the entropy is
zero. Again, not particularly useful.
(What this really says is that the lower
bound on the entropy is zero . . .)

In order to use this approach effectively,
we will have to run the system several
times, and use the results together to
build a probability model. What we will be
looking for is the ‘best’ probability model
for the system – in effect, the limit as we
observe the system infinitely many times.

68

• Another approach we might take is a

Universal Turing Machine approach.

What we do is this. We pick a particular

implementation of the UTM. We now

ask, “What is the minimum length (T, σ)

Turing machine / input string pair which

will leave as output on the UTM tape the

string (T, β)?” This minimal length is

called the computational complexity of

the string β. There is, of course, some

dependence on the details of the

particular UTM chosen, but we can

assume that we just use some standard

UTM.

Clearly a lower bound is zero (the same as

the lower bound for entropy). As an

upper bound, consider the machine T0

which just halts immediately, no matter

what input it is given. Suppose we give as

input to our UTM the string pair (T0, β).

This pair has the required property (it

leaves (T0, β) as output on the UTM),
69

and its length is essentially just the length

of β (this problem is only interesting if β

is reasonably long, and in fact the coding

for T0 is very short – exercise: write a

typical encoding for the machine T0).

Note that the upper bound also agrees

with the entropy.

In theory, the computational complexity

of any string β is well-defined (and

exists?). There is a nonempty set of

Natural numbers which are the lengths of

(T, σ) pairs which have our required

property (the set is nonempty because

(T0, β) works), and therefore there is a

(unique) smallest element of the set.

QED. (At some level, this satisfies the

mathematician in me :-)

In practice? Ah, in practice. Remember

that by Turing’s result on the halting

problem, there is no guaranteed way to

tell if a given Turing machine will even
70

halt on a given input string, and hence, if

you give me an arbitrary (T, σ), I may just

have to run it, and wait forever to know

that it doesn’t leave (T, β) as output.

What that means is that the

computational complexity is a

noncomputable function! However, we

may be able to reduce the upper bound,

by judicious choice of machines to test,

putting reasonable limits on how long we

let them run before we throw them out,

and pure luck. (At some level, this

satisfies the computer scientist in me :-)

The two parts, theory and practice, give

the philosopher in me plenty to chew over

:-)

• In the case of the entropy measure, we

either have to observe the system for an

infinitely long time to be sure we have the

right probability model, or accept an
71

incomplete result based on partial
observations. If we can only run the
system for a limited time, we may be able
to improve our entropy estimates by
judicious subsampling of β.

In the case of the computational
complexity measure, we either have to run
some machines for an infinitely long time
in order to exclude them from
consideration, or accept an incomplete
result based on output from some but not
all machines.

We are in principle prevented from
knowing some things! On the other hand,
it has been shown that although in
practice we can’t be guaranteed to get
the right answer to either the entropy or
computational complexity values, we can
be sure that they are (essentially) equal
to each other, so both methods can be
useful, depending on what we know about
the system, and what our local goals are.

72

To top ←

References

[1] Bennett, C. H. and Landauer, R., The
fundamental physical limits of computation,
Scientific American, July 38–46, 1985.

[2] Bennett, C. H., Demons, engines and the second
law, Scientific American 257 no. 5 (November)
pp 88–96, 1987.

[3] Campbell, Jeremy, Grammatical Man,
Information, Entropy, Language, and Life, Simon
and Schuster, New York, 1982.

[4] Chaitin, G., Algorithmic Information Theory,
Cambridge University Press, Cambridge, UK,
1990.

[5] Chomsky, Noam, Three models for a description
of a language, IRE Trans. on Information Theory,
2:3, 113-124, 1956.

[6] Chomsky, Noam, On certain formal properties of
grammars, Information and Control, 2:2, 137-167,
1959.

73

[7] Church, Alonzo, An unsolvable problem of
elementary number theory, Amer. J. Math. 58
345–363, 1936.

[8] DeLillo, Don, White Noise, Viking/Penguin, New
York, 1984.

[9] Durbin, R., Eddy, S., Krogh, A., Mitchison, G.
Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids Cambridge
University Press, Cambridge, 1999.

[10] Eilenberg, S., and Elgot, C. C., Recursiveness,
Academic Press, New York, 1970.

[11] Feller, W., An Introduction to Probability Theory
and Its Applications, Wiley, New York, 1957.

[12] Feynman, Richard, Feynman lectures on
computation, Addison-Wesley, Reading, 1996.

[13] Garey M R and Johnson D S, Computers and
Intractability, Freeman and Company, New York,
1979.

[14] Gödel, K., Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter Systeme,
I, Monatshefte für Math. und Physik, 38,
173-198, 1931.

74

[15] Hodges, A., Alan Turing: the enigma, Vintage,
London, 1983.

[16] Hofstadter, Douglas R., Metamagical Themas:
Questing for the Essence of Mind and Pattern,
Basic Books, New York, 1985.

[17] Hopcroft, John E. and Ullman, Jeffrey D.,
Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading,
Massachusetts, 1979.

[18] Knuth, D. E., The Art of Computer
Programming, Vol. 2: Seminumerical Algorithms,
2nd ed, Addison-Wesley, Reading, 1981.

[19] Linz, Peter, An Introduction to Formal Languages
and Automata, 3rd Ed., Jones and Bartlett,
Boston, 2000.

[20] Lipton, R. J., Using DNA to solve NP-complete
problems, Science, 268 542–545, Apr. 28, 1995.

[21] Minsky, M. L., Computation: Finite and Infinite
Machines Prentice-Hall, Inc., Englewood Cliffs, N.
J. (also London 1972), 1967.

[22] Moret, Bernard M., The Theory of Computation
Addison-Wesley, Reading, Massachusetts, 1998.

75

[23] von Neumann, John, Probabilistic logic and the
synthesis of reliable organisms from unreliable
components, in automata studies(Shannon,
McCarthy eds), 1956 .

[24] Papadimitriou, C. H., Computational Complexity,
Addison-Wesley, Reading, 1994.

[25] Rabin, M. O., Probabilistic Algorithms,
Algorithms and Complexity: New Directions and
Recent Results, pp. 21-39, Academic Press, 1976.

[26] Schroeder, Manfred, Fractals, Chaos, Power
Laws, Minutes from an Infinite Paradise, W. H.
Freeman, New York, 1991.

[27] Schroeder, M. R., 1984 Number theory in science
and communication Springer-Verlag, New
York/Berlin/Heidelberg, 1984.

[28] Turing, A. M., On computable numbers, with an
application to the Entscheidungsproblem, Proc.
Lond. Math. Soc. Ser. 2 42, 230 ; see also Proc.
Lond. Math. Soc. Ser. 2 43, 544, 1936.

[29] Vergis, A., Steiglitz, K., and Dickinson, B., The
Complexity of Analog Computation, Math.
Comput. Simulation 28, pp. 91-113. 1986.

[30] Zurek, W. H., Thermodynamic cost of
computation, algorithmic complexity and the
information metric, Nature 341 119-124, 1989.

To top ←
76

