
Introduction to theory
of computation

Tom Carter

http://cogs.csustan.edu/˜ tom/SFI-CSSS

Complex Systems Summer School

June, 2002
1

Our general topics: ←
! Symbols, strings and languages
! Finite automata
! Regular expressions and languages
! Markov models
! Context free grammars and languages
! Language generators and recognizers
! The Chomsky hierarchy
! Turing machines
! Computability and tractability
! Computational complexity
! References

2

Introduction ←
What follows is an extremely abbreviated look
at some of the important ideas of the general
areas of automata theory, computability, and
formal languages. In various respects, this
can be thought of as the elementary
foundations of much of computer science. It
also includes a wide variety of tools, and
general categories of tools . . .

3

Symbols, strings and
languages ←

• The classical theory of computation
traditionally deals with processing an
input string of symbols into an output
string of symbols. Note that in the
special case where the set of possible
output strings is just {‘yes’, ‘no’}, (often
abbreviated {T, F} or {1, 0}), then we
can think of the string processing as
string (pattern) recognition.

We should start with a few definitions.
The first step is to avoid defining the
term ‘symbol’ – this leaves an open slot
to connect the abstract theory to the
world . . .

We define:

1. An alphabet is a finite set of symbols.

4

2. A string over an alphabet A is a finite
ordered sequence of symbols from A.
Note that repetitions are allowed. The
length of a string is the number of
symbols in the string, with repetitions
counted. (e.g., |aabbcc| = 6)

3. The empty string, denoted by ε, is the
(unique) string of length zero. Note
that the empty string ε is not the same
as the empty set ∅.

4. If S and T are sets of strings, then
ST = {xy| x ∈ S and y ∈ T}

5. Given an alphabet A, we define

A0 = {ε}
An+1 = AAn

A∗ =
∞⋃

n=0
An

6. A language L over an alphabet A is a
subset of A∗. That is, L ⊂ A∗.

5

• We can define the natural numbers, N, as
follows:

We let

0 = ∅
1 = {∅}
2 = {∅, {∅}}

and in general

n + 1 = {0,1,2, . . . , n}.

Then

N = {0,1,2, . . .}.

• Sizes of sets and countability:

1. Given two sets S and T, we say that
they are the same size (|S| = |T|) if
there is a one-to-one onto function
f : S→ T.

2. We write |S| ≤ |T| if there is a
one-to-one (not necessarily onto)
function f : S→ T.

6

3. We write |S| < |T| if there is a
one-to-one function f : S→ T, but
there does not exist any such onto
function.

4. We call a set S

(a) Finite if |S| < |N|

(b) Countable if |S| ≤ |N|

(c) Countably infinite if |S| = |N|

(d) Uncountable if |N| < |S|.

5. Some examples:

(a) The set of integers
Z = {0,1,−1,2,−2, . . .} is countable.

(b) The set of rational numbers
Q = {p/q | p, q ∈ Z, q *= 0} is
countable.

7

(c) If S is countable, then so is SxS, the
cartesian product of S with itself,
and in general so is Sn for any n < ∞.

(d) For any nonempty alphabet A, A∗ is
countably infinite.

Exercise: Verify each of these
statements.

6. Recall that the power set of a set S is
the set of all subsets of S:

P(S) = {T | T ⊂ S}.

We then have the fact that for any set
S,

|S| < |P(S)|.
Pf: First, it is easy to see that

|S| ≤ |P(S)|
since there is the one-to-one function
f : S→ P(S) given by f(s) = {s} for
s ∈ S.

8

On the other hand, no function
f : S→ P(S) can be onto. To show
this, we need to exhibit an element of
P(S) that is not in the image of f . For
any given f , such an element (which
must be a subset of S) is

Rf = {x ∈ S | x /∈ f(x)}.

Now suppose, for contradiction, that
there is some s ∈ S with f(s) = Rf .
There are then two possibilities: either
s ∈ f(s) = Rf or s /∈ f(s) = Rf . Each
of these lead to a contradiction:

If s ∈ f(s) = Rf , then by the definition
of Rf , s /∈ f(s). This is a contradiction.

If s /∈ f(s) = Rf , then by the definition
of Rf , s ∈ Rf = f(s). Again, a
contradiction.

Since each case leads to a
contradiction, no such s can exist, and
hence f is not onto. QED

9

• From this, we can conclude for any
countably infinite set S, P(S) is
uncountable. Thus, for example, P(N) is
uncountable. It is not hard to see that the
set of real numbers, R, is the same size as
P(N), and is therefore uncountable.

Exercise: Show this. (Hint: show that R
is the same size as
(0,1) = {x ∈ R | 0 < x < 1}, and then use
the binary representation of real numbers
to show that |P(N)| = |(0,1)|.

• We can also derive a fundamental
(non)computability fact:

There are languages that cannot be
recognized by any computation. In other
words, there are languages for which
there cannot exist any computer
algorithm to determine whether an
arbitrary string is in the language or not.

10

To see this, we will take as given that any
computer algorithm can be expressed as a
computer program, and hence, in
particular, can be expressed as a finite
string of ascii characters. Therefore, since
ASCII∗ is countably infinite, there are at
most countably many computer
algorithms/programs. On the other hand,
since a language is any arbitrary subset of
A∗ for some alphabet A, there are
uncountably many languages, since there
are uncountably many subsets.

11

Finite automata ←
• This will be a quick tour through some of

the basics of the abstract theory of
computation. We will start with a
relatively straightforward class of
machines and languages – deterministic
finite automata and regular languages.

In this context when we talk about a
machine, we mean an abstract rather
than a physical machine, and in general
will think in terms of a computer
algorithm that could be implemented in a
physical machine. Our descriptions of
machines will be abstract, but are
intended to be sufficiently precise that an
implementation could be developed.

12

• A deterministic finite automaton (DFA)
M = (S,A, s0, δ,F) consists of the
following:

S, a finite set of states,

A, an alphabet,

s0 ∈ S, the start state,

δ : SxA→ S, the transition function, and

F ⊂ S, the set of final (or accepting)
states of the machine.

We think in terms of feeding strings from
A∗ into the machine. To do this, we
extend the transition function to a
function

δ̂ : SxA∗ → S

by

δ̂(s, ε) = s,

δ̂(s, xa) = δ̂(δ(s, a), x).
13

We can then define the language of the
machine by

L(M) = {x ∈ A∗ | δ̂(s0, x) ∈ F}.

In other words, L(M) is the set of all
strings in A∗ that move the machine via
its transition function from the start state
s0 into one of the final (accepting) states.

We can think of the machine M as a
recognizer for L(M), or as a string
processing function

fM : A∗ → {1,0}
where fM(x) = 1 exactly when x ∈ L(M).

• There are several generalizations of DFAs
that are useful in various contexts. A first
important generalization is to add a
nondeterministic capability to the
machines. A nondeterministic finite
automaton (NFA) M = (S,A, s0, δ,F) is
the same as a DFA except for the
transition function:

14

S, a finite set of states,

A, an alphabet,

s0 ∈ S, the start state,

δ : SxA→ P(S), the transition function,

F ⊂ S, the set of final (or accepting)
states of the machine.

For a given input symbol, the transition
function can take us to any one of a set
of states.

We extend the transition function to
δ̂ : SxA∗ → P(S) in much the same way:

δ̂(s, ε) = s,

δ̂(s, xa) =
⋃

r∈δ(s,a)

δ̂(r, x).

We define the language of the machine by

L(M) = {x ∈ A∗ | δ̂(s0, x) ∩ F *= ∅}.

15

A useful fact is that DFAs and NFAs
define the same class of languages. In
particular, given a language L, we have
that L = L(M) for some DFA M if and
only if L = L(M′) for some NFA M′.

Exercise: Prove this fact.

In doing the proof, you will notice that if
L = L(M) = L(M′) for some DFA M and
NFA M′, and M′ has n states, then M
might need to have as many as 2n states.
In general, NFAs are relatively easy to
write down, but DFAs can be directly
implemented.

• Another useful generalization is to allow
the machine to change states without any
input (often called ε-moves). An NFA
with ε-moves would be defined similarly to
an NFA, but with transition function

δ : Sx(A ∪ {ε})→ P(S).
16

Exercise: What would an appropriate
extended transition function δ̂ and
language L(M) be for an NFA with
ε-moves?

Exercise: Show that the class of
languages defined by NFAs with ε-moves
is the same as that defined by DFAs and
NFAs.

Here is a simple example. By convention,
the states in F are double circled.
Labelled arrows indicate transitions.
Exercise: what is the language of this
machine?

17

Regular expressions and
languages ←

• In the preceding section we defined a
class of machines (Finite Automata) that
can be used to recognize members of a
particular class of languages. It would be
nice to have a concise way to describe
such a language, and furthermore to have
a convenient way to generate strings in
such a language (as opposed to having to
feed candidate strings into a machine,
and hoping they are recognized as being
in the language . . .).

Fortunately, there is a nice way to do this.
The class of languages defined by Finite
Automata are called Regular Languages
(or Regular Sets of strings). These
languages are described by Regular
Expressions. We define these as follows.
We will use lower case letters for regular
expressions, and upper case for regular
sets.

18

• Definition: Given an alphabet A, the
following are regular expressions / regular
sets over A:

Expressions : Sets :
∅ ∅
ε {ε}

a, for a ∈ A {a}, for a ∈ A

If r and s are If R and S are
regular, then regular, then

so are : so are :

r + s R ∪ S
rs RS
r∗ R∗

and nothing else is regular.

We say that the regular expression on the
left represents the corresponding regular
set on the right. We say that a language
is a regular language if the set of strings
in the language is a regular set.

19

A couple of examples:

• The regular expression

(00 + 11)∗(101 + 110)

represents the regular set (regular
language)

{101,110,00101,00110,11101,11110,

0000101,0000110,0011101,0011110, . . .}.

Exercise: What are some other strings in
this language? Is 00110011110 in the
language? How about 00111100101110?

• A protein motif pattern, described as a
(slight variation of our) regular expression.

20

• It is a nice fact that regular languages are
exactly the languages of the finite
automata defined in the previous section.
In particular, a language L is a regular set
(as defined above) if and only if L = L(M)
for some finite automaton M.

The proof of this fact is relatively
straightforward.

For the first half, we need to show that if
L is a regular set (in particular, if it is
represented by a regular expression r),
then L = L(M) for some finite automaton
M. We can show this by induction on the
size of the regular expression r. The basis
for the induction is the three simplest
cases: ∅, {ε}, and {a}. (Exercise: find
machines for these three cases.) We then
show that, if we know how to build
machines for R and S, then we can build
machines for R ∪ S, RS, and R∗.
(Exercise: Show how to do these three –
use NFAs with ε-moves.)

21

For the second half, we need to show that
if we are given a DFA M, then we can
find a regular expression (or a regular set
representation) for L(M). We can do this
by looking at sets of strings of the form

Rk
ij = {x ∈ A∗ | x takes M from state si to

state sj without going through (into and
out of) any state sm with m ≥ k}.

Note that if the states of M are
{s0, s1, . . . , sn−1}, then

L(M) =
⋃

sj∈F
Rn

0j.

We also have

R0
ij = {a ∈ A | δ(si, a) = sj}

(for i = j, we also get ε . . .),

and, for k ≥ 0,

Rk+1
ij = Rk

ij ∪Rk
ik(R

k
kk)

∗Rk
kj.

Exercise: Verify, and finish the proof.

22

Markov models ←
• An important related class of systems are

Markov models (often called Markov
chains). These models are quite similar to
finite automata, except that the
transitions from state to state are
probabilistically determined, and typically
we do not concern ourselves with final or
accepting states.

Markov models can often be thought of
as models for discrete dynamical systems.
We model the system as consisting of a
finite set of states, with a certain
probability of transition from a state to
any other state.

23

The typical way to specify a Markov
model is via a transition matrix:

T =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

pn1 pn2 · · · pnn


where 0 ≤ pij ≤ 1, and

∑
j pij = 1.

Each entry pij tells the probability the
system will go from state si to state sj in
the next time step.

The transition probabilities over two steps
are given by T2. Over n steps, the
probabilities are given by Tn.

Exercises: Suppose we run the system for
very many steps. How might we estimate
the relative probabilities of being in any
given state?

What information about the system might
we get from eigenvalues and eigenvectors
of the matrix T?

24

• A couple of examples:

First, a generic Markov model for DNA
sequences:

An outline for a more complex model, of a
type often called a hidden Markov model.

25

Context free grammars
and languages ←

• While regular languages are very useful,
not every interesting language is regular.
It is not hard to show that even such
simple languages as balanced parentheses
or palindromes are not regular. (Here is
probably a good place to remind ourselves
again that in this context, a language is
just a set of strings . . .)

A more general class of languages is the
context free languages. A straightforward
way to specify a context free language is
via a context free grammar. Context free
grammars can be thought of as being for
context free languages the analogue of
regular expressions for regular languages.
They provide a mechanism for generating
elements on the language.

26

• A context free grammar G = (V, T, S, P)
consists of a two alphabets V and T
(called variables and terminals,
respectively), an element S ∈ V called the
start symbol, and a finite set of
production rules P. Each production rule
is of the form A → α, where A ∈ V and
α ∈ (V ∪T)∗.

We can use such a production rule to
generate new strings from old strings. In
particular, if we have the string
γAδ ∈ (V ∪T)∗ with A ∈ V, then we can
produce the new string γαδ. The
application of a production rule from the
grammar G is often written α ⇒

G
β, or just

α ⇒ β if the grammar is clear. The
application of 0 or more production rules
one after the other is written α

∗⇒ β.

The language of the grammar G is then

L(G) = {α ∈ T∗ | S ∗⇒ α}.

The language of such a grammar is called
a context free language.

27

• Here, as an example, is the language
consisting of strings of balanced
parenthese. Note that we can figure out
which symbols are variables, since they all
occur on the left side of some production.

S → R

R → ε

R → (R)

R → RR

Exercise: Check this. How would we
modify the grammar if we wanted to
include balanced ‘[]’ and ‘{}’ pairs also?

• Here is a palindrome language over the
alphabet T = {a, b}:

S → R

R → ε | a | b

R → aRa | bRb

(note the ‘|’ to indicate alternatives . . .)

28

Exercise: What would a grammar for
simple algebraic expressions (with
terminals T = {x, y, +, -, *, (,)})
look like?

• A couple of important facts are that any
regular language is also context free, but
there are context free languages that are
not regular.

Exercise: How might one prove these
facts?

• Context free grammars can easily be used
to generate strings in the corresponsing
language. We would also like to have
machines to recognize such languages.
We can build such machines through a
slight generalization of finite automata.
The generalization is to add a ‘pushdown
stack’ to our finite automata. These
more powerful machines are called
pushdown automata, or PDAs . . .

29

• Here is an example – this is a grammar
for the RNP-1 motif from an earlier
example. This also gives an example of
what a grammar for a regular language
might look like. Question: what features
of this grammar reflect the fact that it is
for a regular language?

RNP-1 motif grammar

S → rW1 | kW1

W1 → gW2

W2 → [afilmnqstvwy]W3

W3 → [agsci]W4

W4 → fW5 | yW5

W5 → [liva]W6

W6 → [acdefghiklmnpqrstvwy]W7

W7 → f | y | m

30

• Could we build a context free grammar for
the primary structure of this tRNA that
would reflect the secondary structure?
What features could be variable, and
which must be fixed in order for the
tRNA to function appropriately in context?

31

Language generators and
recognizers ←

• First, note that the function ln(x) has
derivative 1/x. From this, we find that
the tangent to ln(x) at x = 1 is the line
y = x− 1. Further, since ln(x) is concave
down, we have, for x > 0, that

ln(x) ≤ x− 1,

with equality only when x = 1.

Now, given two probability distributions,
P = {p1, p2, . . . , pn} and
Q = {q1, q2, . . . , qn}, where pi, qi ≥ 0 and∑

i pi =
∑

i qi = 1, we have

n∑
i=1

pi ln

(
qi

pi

)
≤

n∑
i=1

pi

(
qi

pi
− 1

)
=

n∑
i=1

(qi − pi)

=
n∑

i=1
qi −

n∑
i=1

pi = 1− 1 = 0,

with equality only when pi = qi for all i. It
is easy to see that the inequality actually
holds for any base, not just e.

32

The Chomsky hierarchy←
• Let us work briefly with a simple model

for an idealized gas. Let us assume that
the gas is made up of N point particles,
and that at some time t0 all the particles
are contained within a (cubical) volume
V . Assume that through some
mechanism, we can determine the
location of each particle sufficiently well
as to be able to locate it within a box
with sides 1/100 of the sides of the
containing volume V . There are 106 of
these small boxes within V .

33

Turing machines ←
• In his classic 1948 papers, Claude

Shannon laid the foundations for
contemporary information, coding, and
communication theory. He developed a
general model for communication
systems, and a set of theoretical tools for
analyzing such systems.

His basic model consists of three parts: a
sender (or source), a channel, and a
receiver (or sink). His general model also
includes encoding and decoding elements,
and noise within the channel.

34

Computability and
tractability ←

• We have already observed that there are
some problems that are not computable –
in particular, we showed the existence of
languages for which there cannot be an
algorithmic recognizer to determine which
strings are in the language. Another
important example of a noncomputable
problem is the so-called halting problem.
In simple terms, the question is, given a
computer program, does the program
contain an infinite loop? There cannot be
an algorithm that is guaranteed to
correctly answer this question for all
programs.

More practically, however, we often are
interested in whether a program can be
executed in a ‘reasonable’ length of time,
using a reasonable amount of resources
such as system memory.

35

• We can generally categorize
computational algorithms according to
how the resources needed for execution of
the algorithm increase as we increase the
size of the input. Typical resources are
time and (storage) space. In different
contexts, we may be interested in
worst-case or average-case performance
of the algorithm. For theoretical
purposes, we will typically be interested in
large input sets . . .

36

• A standard mechanism for comparing the
growth of functions with domain N is
“big-Oh.” One way of defining this
notion is to associate each function with
a set of functions. We can then compare
algorithms by looking at their “big-Oh”
categories.

• Given a function f , we define O(f) by:

g ∈ O(f) ⇐⇒
there exist c > 0 and N ≥ 0 such that

|g(n)| ≤ c|f(n)| for all n ≥ N .

• We further define θ(f) by:
g ∈ θ(f) iff g ∈ O(f) and f ∈ O(g).

37

• In general we will consider the run-time of
algorithms in terms of the growth of the
number of elementary computer
operations as a function of the number of
bits in the (encoded) input. Some
important categories – an algorithm’s
run-time f is:

1. Logarithmic if f ∈ θ(log(n)).

2. Linear if f ∈ θ(n).

3. Quadratic if f ∈ θ(n2).

4. Polynomial if f ∈ θ(P (n)) for some
polynomial P (n).

5. Exponential if f ∈ θ(bn) for some
constant b > 1.

6. Factorial if f ∈ θ(n!).

38

• Typically we say that a problem is
tractable if (we know) there exists an
algorithm whose run-time is (at worst)
polynomial that solves the problem.
Otherwise, we call the problem
intractable.

• There are many problems which have the
interesting property that if someone (an
oracle?) provides you with a solution to
the problem, you can tell in polynomial
time whether what they provided you
actually is a solution. Problems with this
property are called Non-deterministically
Polynomial, or NP, problems. One way to
think about this property is to imagine
that we have arbitrarily many machines
available. We let each machine work on
one possible solution, and whichever
machine finds the (a) solution lets us
know.

39

• There are some even more interesting NP
problems which are universal for the class
of NP problems. These are called
NP-complete problems. A problem S is
NP-complete if S is NP and, there exists
a polynomial time algorithm that allows
us to translate any NP problem into an
instance of S. If we could find a
polynomial time algorithm to solve a
single NP-complete problem, we would
then have a polynomial time solution for
each NP problem.

40

• Some examples:

1. Factoring a number is NP. First, we
recognize that if M is the number we
want to factor, then the input size m is
approximately log(M) (that is, the
input size is the number of digits in the
number). The elementary school
algorithm (try dividing by each number
less than

√
M) has run-time

approximately 10
m
2 , which is

exponential in the number of digits.
On the other hand, if someone hands
you two numbers they claim are
factors of M , you can check by
multiplying, which takes on the order
of m2 operations.

It is worth noting that there is a
polynomial time algorithm to
determine whether or not a number is
prime, but for composite numbers, this
algorithm does not provide a

41

factorization. Factoring is a
particularly important example because
various encryption algorithms such as
RSA (used in the PGP software)
depend for their security on the
difficulty of factoring numbers with
several hundred digits.

42

2. Satisfiability of a boolean expression is
NP-complete. Suppose we have n

boolean variables {b1, b2, . . . , bn} (each
with the possible values 0 and 1). We
can form a general boolean expression
from these variables and their
negations:

f(b1, b2, . . . , bn) =
∧
k

(
∨

i,j≤n

(bi,∼ bj)).

A solution to such a problem is an
assignment of values 0 or 1 to each of
the bi such that f(b1, b2, . . . , bn) =1.
There are 2n possible assignments of
values. We can check an individual
possible solution in polynomial time,
but there are exponentially many
possibilities to check. If we could
develop a feasible computation for this
problem, we would have resolved the

traditional P
?
=NP problem . . .

43

Computational complexity←
• Suppose we have a system for which we

can measure certain macroscopic
characteristics. Suppose further that the
system is made up of many microscopic
elements, and that the system is free to
vary among various states. Given the
discussion above, let us assume that with
probability essentially equal to 1, the
system will be observed in states with
maximum entropy.

We will then sometimes be able to gain
understanding of the system by applying a
maximum information entropy principle,
and, using Lagrange multipliers, derive
formulas for aspects of the system.

44

To top ←

References

[1] Brillouin, L., Science and information theory
Academic Press, New York, 1956.

[2] Brooks, Daniel R., and Wiley, E. O., Evolution as
Entropy, Toward a Unified Theory of Biology,
Second Edition, University of Chicago Press,
Chicago, 1988.

[3] Campbell, Jeremy, Grammatical Man,
Information, Entropy, Language, and Life, Simon
and Schuster, New York, 1982.

[4] Cover, T. M., and Thomas J. A., Elements of
Information Theory, John Wiley and Sons, New
York, 1991.

[5] DeLillo, Don, White Noise, Viking/Penguin, New
York, 1984.

[6] Feller, W., An Introduction to Probability Theory
and Its Applications, Wiley, New York,1957.

[7] Feynman, Richard, Feynman lectures on
computation, Addison-Wesley, Reading, 1996.

45

[8] Gatlin, L. L., Information Theory and the Living
System, Columbia University Press, New York,
1972.

[9] Haken, Hermann, Information and
Self-Organization, a Macroscopic Approach to
Complex Systems, Springer-Verlag, Berlin/New
York, 1988.

[10] Hamming, R. W., Error detecting and error
correcting codes, Bell Syst. Tech. J. 29 147,
1950.

[11] Hamming, R. W., Coding and information theory,
2nd ed, Prentice-Hall, Englewood Cliffs, 1986.

[12] Hill, R., A first course in coding theory Clarendon
Press, Oxford, 1986.

[13] Hodges, A., Alan Turing: the enigma Vintage,
London, 1983.

[14] Hofstadter, Douglas R., Metamagical Themas:
Questing for the Essence of Mind and Pattern,
Basic Books, New York, 1985

[15] Jones, D. S., Elementary information theory
Clarendon Press, Oxford, 1979.

[16] Knuth, Eldon L., Introduction to Statistical
Thermodynamics, McGraw-Hill, New York, 1966.

46

[17] Landauer, R., Information is physical, Phys.
Today, May 1991 23-29.

[18] Landauer, R., The physical nature of information,
Phys. Lett. A, 217 188, 1996.

[19] van Lint, J. H., Coding Theory, Springer-Verlag,
New York/Berlin, 1982.

[20] Lipton, R. J., Using DNA to solve NP-complete
problems, Science, 268 542–545, Apr. 28, 1995.

[21] MacWilliams, F. J., and Sloane, N. J. A., The
theory of error correcting codes, Elsevier Science,
Amsterdam, 1977.

[22] Martin, N. F. G., and England, J. W.,
Mathematical Theory of Entropy,
Addison-Wesley, Reading, 1981.

[23] Maxwell, J. C., Theory of heat Longmans, Green
and Co, London, 1871.

[24] von Neumann, John, Probabilistic logic and the
synthesis of reliable organisms from unreliable
components, in automata studies(
Shanon,McCarthy eds), 1956 .

[25] Papadimitriou, C. H., Computational Complexity,
Addison-Wesley, Reading, 1994.

47

[26] Pierce, John R., An Introduction to Information
Theory – Symbols, Signals and Noise, (second
revised edition), Dover Publications, New York,
1980.

[27] Roman, Steven, Introduction to Coding and
Information Theory, Springer-Verlag, Berlin/New
York, 1997.

[28] Sampson, Jeffrey R., Adaptive Information
Processing, an Introductory Survey,
Springer-Verlag, Berlin/New York, 1976.

[29] Schroeder, Manfred, Fractals, Chaos, Power
Laws, Minutes from an Infinite Paradise, W. H.
Freeman, New York, 1991.

[30] Shannon, C. E., A mathematical theory of
communication Bell Syst. Tech. J. 27 379; also
p. 623, 1948.

[31] Slepian, D., ed., Key papers in the development of
information theory IEEE Press, New York, 1974.

[32] Turing, A. M., On computable numbers, with an
application to the Entscheidungsproblem, Proc.
Lond. Math. Soc. Ser. 2 42, 230 ; see also Proc.
Lond. Math. Soc. Ser. 2 43, 544, 1936.

[33] Zurek, W. H., Thermodynamic cost of
computation, algorithmic complexity and the
information metric, Nature 341 119-124, 1989.

To top ←
48

