A very brief introduction to differentiable manifolds

Tom Carter

http://cogs.csustan.edu/~ tom/diff-manifolds

Santa Fe Institute
Complex Systems Summer School

June, 2001

Our general topics: ←

- Why differentiable manifolds
- Topological spaces (ex)
- Examples of topological spaces (ex)
- Coordinate systesm and manifolds (ex)
- Manifolds (ex)
- References

(ex): exercises.

Why differentiable manifolds ←

• Differentiable manifolds can generally be thought of as a generalization of \mathbb{R}^n . They are mathematical objects equipped with smooth (local) coordinate systems. Much of physics can be thought of as having a natural home in differentiable manifolds. A particularly valuable aspect of differentiable manifolds is that unlike traditional flat (Euclidean) \mathbb{R}^n , they can have (intrinsic) curvature.

Topological spaces

 We need a way to talk about "nearness" of points in a space, and continuity of functions. We can't (yet) talk about the "distance" between pairs of points or limits of sequences – we will use a more abstract approach. We start with:

Def.: A topological space (X,T) is a set X together with a topology T on X. A topology on a set X is a collection of subsets of X (that is, $T \subset \mathcal{P}(X)$) satisfying:

- 1. If $G_1, G_2 \in T$, then $G_1 \cap G_2 \in T$.
- 2. If $\{G_{\alpha} \mid \alpha \in J\}$ is any collection of sets in \mathbf{T} , then

$$\bigcup_{\alpha \in J} G_{\alpha} \in \mathbf{T}.$$

3. $\emptyset \in \mathbf{T}$, and $\mathbf{X} \in \mathbf{T}$.

- The sets $G \in \mathbf{T}$ are called *open sets* in \mathbf{X} . A subset $F \subset \mathbf{X}$ whose complement is open is called a *closed set* in \mathbf{X} .
- If A is any subset of a topological space X, then the *interior* of A, denoted by A° , is the union of all open sets contained in A. The *closure* of A, denoted by \overline{A} , is the intersection of all closed sets containing A.
- If $x \in X$, then a *neighborhood* of x is any subset $A \subset X$ with $x \in A^{\circ}$.
- If (X,T) is a topological space, and A is a subset of X, then the *induced* or *subspace* topology T_A on A is given by

$$T_A = \{G \cap A \mid G \in T\}.$$

It is easy to check that T_A actually is a topology on A. With this topology, A is called a *subspace* of X.

• Suppose X and Y are topological spaces, and $f: X \to Y$. Recall that if $V \subset Y$, we use the notation

$$f^{-1}(V) = \{x \in X \mid f(x) \in V\}.$$

We then have the definition:

Def.: A function $f: X \to Y$ is called continuous if $f^{-1}(G)$ is open in X for every open set G in Y.

- We can also define continuity at a point. Suppose $f: X \to Y$, $x \in X$, and y = f(x). We say that f is continuous at x if for every neighborhood V of y, there is a neighborhood U of x with $f(U) \subset V$. We then say that a function f is continuous if it is continuous at every $x \in X$.
- A homeomorphism from a topological space X to a topological space Y is a 1-1, onto, continuous function $f: X \to Y$ whose inverse is also continuous.

- A topological space is called separable if there is a countable collection of open sets such that every open set in T can be written as a union of members of the countable collection.
- A topological space X is called Hausdorff if for every $x,y\in X$ with $x\neq y$, there are neighborhoods U and V of x and y (respectively) with $U\cap V=\emptyset$.
- This is just the barest beginnings of Topology, but it should be enough to get us off the ground . . .

Exercises: Topological spaces —

- 1. Show that the intersection of a finite number of open sets is open. Give an example to show that the intersection of an infinite number of open sets may not be open.
- 2. How many distinct topologies are there on a set containing three elements?
- 3. Show that the interior of a set is open. Show that the closure of a set is closed. Show that $A^{\circ} \subset A \subset \overline{A}$. Show that it is possible for A° to be empty even when A is not empty.
- 4. Show that if $f: X \to Y$ is continuous, and $F \subset Y$ is closed, then $f^{-1}(F)$ is closed in X.

- 5. Show that a set can be both open and closed. Show that a set can be neither open nor closed.
- 6. Show that if $f: X \to Y$ and $g: Y \to Z$ are both continuous, then $g \circ f: X \to Z$ is continuous.
- 7. Show that the two definitions of continuity are equivalent.
- 8. A subset $D \subset X$ is called *dense* in X if $\overline{D} = X$. Show that it is possible to have a dense subset D with $D^{\circ} = \emptyset$.
- 9. Show that if D is dense in X, then for every open set $G \subset X$, we have $G \cap D \neq \emptyset$. In particular, every neighborhood of every point in X contains points in D.

10. Show that in a Hausdorff space, every set consisting of a single point x (i.e., $\{x\}$) is a closed set.

Examples of topological spaces

 For any set X, there are two trivial topologies:

$$T_c = \{\emptyset, X\}$$

and

$$T_d = \mathcal{P}(X)$$
.

 T_d is the topology in which each point (considered as a subset) is open (and hence, every subset is open). It is called the *discrete* topology. T_c is sometimes called the *concrete* topology.

• On \mathbb{R} , there is the usual topology. We start with open intervals $(a,b) = \{x \mid a < x < b\}$. An open set is then any set which is a union of open intervals.

• On \mathbb{R}^n , there is the usual topology. One way to get this is to begin with the open balls with center a and radius r, where $a \in \mathbb{R}^n$ can be any point in \mathbb{R}^n , and r is any positive real number:

$$B_n(a,r) = \{x \in \mathbb{R}^n \mid |x - a| < r\}.$$

An open set is then any set which is a union of open balls.

Exercises: Examples of topological spaces

- 1. Check that each of the examples actually is a topological space.
- 2. For k < n, we can consider \mathbb{R}^k to be a subset of \mathbb{R}^n . Show that the inherited subspace topology is the same as the usual topology.
- 3. Show that \mathbb{R}^n with the usual topology is separable and Hausdorff.

Coordinate systems and manifolds ←

• Suppose M is a topological space, U is an open subset of M, and $\mu:U\to\mathbb{R}^n$. Suppose further that $\mu(U)$ is an open subset of \mathbb{R}^n , and that μ is a homeomorphism between U and $\mu(U)$. We call μ a local coordinate system of dimension n on U.

For each point $m \in U$, we then have that $\mu(m) = (\mu_1(m), \dots, \mu_n(m))$, the coordinates of m with respect to μ .

• Now suppose that we have another open subset V of M, and ν is a local coordinate system on V. We say that μ and ν are $C^i nfty$ compatible if the composite functions $\mu \circ \nu^{-1}$ and $\nu \circ \mu^{-1}$ are C^∞ functions on $\mu(U) \cap \nu(V)$. Remember that

a function on \mathbb{R}^n is C^{∞} if it is continuous, and all its partial derivatives are also continuous.

- A topological manifold of dimension n is a separable Hausdorff space M such that every point in M is in the domain of a local coordinate system of dimension n. These spaces are sometimes called *locally Euclidean* spaces.
- A C^{∞} differentiable structure on a topological manifold M is a collection \mathcal{F} of local coordinate systems on M such that:
 - 1. The union of the domains of the local coordinate systems is all of M.
 - 2. If μ_1 and μ_2 are in \mathcal{F} , then μ_1 and μ_2 are C^{∞} compatible.

- 3. \mathcal{F} is maximal with respect to 2. That is, if ν is C^{∞} compatible with all $\mu \in \mathcal{F}$, then $\nu \in \mathcal{F}$.
- A C^{∞} differentiable manifold of dimension n is a topological manifold M of dimension n, together with a C^{∞} differentiable structure \mathcal{F} on M.

Notes:

- 1. It is possible for a topological manifold to have more than one distinct differentiable structures.
- 2. In this discussion, we have limited ourselves to C^{∞} differentiable structures. With somewhat more work, we could define C^k structures for $k < \infty$.
- 3. We have limited the domains of our local coordinate systems to be open

subsets of M. This means that the usual spherical and cylindrical coordinate systems on \mathbb{R}^3 do not count as local coordinate systems by our definition.

- 4. With somewhat more work, we could define differentiable manifolds with boundaries.
- 5. We have limited ourselves to manifolds of finite dimension. With somewhat more work, we could define infinite dimensional differentiable manifolds.

Exercises: Coordinate systems and manifolds —

1.

Manifolds ←

Exercises: Manifolds

1.

To top ←

References

- [1] Auslander, Louis, and MacKenzie, Robert E., Introduction to Differentiable Manifolds, Dover Publications, New York, 1977.
- [2] Bishop, Richard L., and Goldberg, Samuel I., Tensor Analysis on Manifolds, Dover Publications, New York, 1980.
- [3] Warner, Frank W., Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company, Glenview, Illinois, 1971.

To top ←