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Why differentiable manifolds

←• Differentiable manifolds can generally be

thought of as a generalization of Rn.

They are mathematical objects equipped

with smooth (local) coordinate systems.

Much of physics can be thought of as

having a natural home in differentiable

manifolds. A particularly valuable aspect

of differentiable manifolds is that unlike

traditional flat (Euclidean) Rn, they can

have (intrinsic) curvature.
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Topological spaces

←• We need a way to talk about “nearness”

of points in a space, and continuity of

functions. We can’t (yet) talk about the

“distance” between pairs of points or

limits of sequences – we will use a more

abstract approach. We start with:

Def.: A topological space (X,T) is a

set X together with a topology T on X.

A topology on a set X is a collection of

subsets of X (that is, T ⊂ P(X))

satisfying:

1. If G1, G2 ∈ T, then G1 ∩G2 ∈ T.

2. If {Gα | α ∈ J} is any collection of sets

in T, then ⋃
α∈J

Gα ∈ T.

3. ∅ ∈ T, and X ∈ T.
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• The sets G ∈ T are called open sets in X.
A subset F ⊂ X whose complement is
open is called a closed set in X.

• If A is any subset of a topological space
X, then the interior of A, denoted by A◦,
is the union of all open sets contained in
A. The closure of A, denoted by A, is the
intersection of all closed sets containing
A.

• If x ∈ X, then a neighborhood of x is any
subset A ⊂ X with x ∈ A◦.

• If (X,T ) is a topological space, and A is a
subset of X, then the induced or subspace
topology TA on A is given by

TA = {G ∩A | G ∈ T}.

It is easy to check that TA actually is a
topology on A. With this topology, A is
called a subspace of X.
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• Suppose X and Y are topological spaces,
and f : X → Y . Recall that if V ⊂ Y , we
use the notation

f−1(V ) = {x ∈ X | f(x) ∈ V }.

We then have the definition:

Def.: A function f : X → Y is called
continuous if f−1(G) is open in X for
every open set G in Y .

• We can also define continuity at a point.
Suppose f : X → Y , x ∈ X, and y = f(x).
We say that f is continuous at x if for
every neighborhood V of y, there is a
neighborhood U of x with f(U) ⊂ V . We
then say that a function f is continuous if
it is continuous at every x ∈ X.

• A homeomorphism from a topological
space X to a topological space Y is a 1-1,
onto, continuous function f : X → Y

whose inverse is also continous.
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• A topological space is called separable if

there is a countable collection of open

sets such that every open set in T can be

written as a union of members of the

countable collection.

• A topological space X is called Hausdorff

if for every x, y ∈ X with x 6= y, there are

neighborhoods U and V of x and y

(respectively) with U ∩ V = ∅.

• This is just the barest beginnings of

Topology, but it should be enough to get

us off the ground . . .

7



Topological spaces - exercises

←1. Show that the intersection of a finite

number of open sets is open. Give an

example to show that the intersection of

an infinite number of open sets may not

be open.

2. How many distinct topologies are there

on a set containing three elements?

3. Show that the interior of a set is open.

Show that the closure of a set is closed.

Show that A◦ ⊂ A ⊂ A. Show that it is

possible for A◦ to be empty even when A

is not empty.

4. Show that if f : X → Y is continuous, and

F ⊂ Y is closed, then f−1(F ) is closed in

X.
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5. Show that a set can be both open and

closed. Show that a set can be neither

open nor closed.

6. Show that if f : X → Y and g : Y → Z are

both continuous, then g ◦ f : X → Z is

continuous.

7. Show that the two definitions of

continuity are equivalent.

8. A subset D ⊂ X is called dense in X if

D = X. Show that it is possible to have a

dense subset D with D◦ = ∅.

9. Show that if D is dense in X, then for

every open set G ⊂ X, we have G ∩D 6= ∅.
In particular, every neighborhood of every

point in X contains points in D.
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10. Show that in a Hausdorff space, every set

consisting of a single point x (i.e., {x}) is

a closed set.
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Examples of topological

spaces

←• For any set X, there are two trivial

topologies:

Tc = {∅, X}

and

Td = P(X).

Td is the topology in which each point

(considered as a subset) is open (and

hence, every subset is open). It is called

the discrete topology. Tc is sometimes

called the concrete topology.

• On R, there is the usual topology. We

start with open intervals

(a, b) = {x | a < x < b}. An open set is

then any set which is a union of open

intervals.

11



• On Rn, there is the usual topology. One

way to get this is to begin with the open

balls with center a and radius r, where

a ∈ Rn can be any point in Rn, and r is

any positive real number:

Bn(a, r) = {x ∈ Rn | |x− a| < r}.

An open set is then any set which is a

union of open balls.

12



Examples of topological spaces

- exercises

←1. Check that each of the examples actually

is a topological space.

2. For k < n, we can consider Rk to be a

subset of Rn. Show that the inherited

subspace topology is the same as the

usual topology.

3. Show that Rn with the usual topology is

separable and Hausdorff.
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Coordinate systems and

manifolds

←• Suppose M is a topological space, U is an
open subset of M , and µ : U → R

n.
Suppose further that µ(U) is an open
subset of Rn, and that µ is a
homeomorphism between U and µ(U).
We call µ a local coordinate system of
dimension n on U .

For each point m ∈ U , we then have that
µ(m) = (µ1(m), . . . , µn(m)), the
coordinates of m with respect to µ.

• Now suppose that we have another open
subset V of M , and ν is a local coordinate
system on V . We say that µ and ν are
C∞ compatible if the composite functions
µ ◦ ν−1 and ν ◦ µ−1 are C∞ functions on
µ(U) ∩ ν(V ). Remember that a function
on Rn is C∞ if it is continuous, and all its
partial derivatives are also continuous.
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• A topological manifold of dimension n is a

separable Hausdorff space M such that

every point in M is in the domain of a

local coordinate system of dimension n.

These spaces are sometimes called locally

Euclidean spaces.

• A C∞ differentiable structure on a

topological manifold M is a collection F
of local coordinate systems on M such

that:

1. The union of the domains of the local

coordinate systems is all of M .

2. If µ1 and µ2 are in F, then µ1 and µ2

are C∞ compatible.

3. F is maximal with respect to 2. That

is, if ν is C∞ compatible with all µ ∈ F,

then ν ∈ F.
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• A C∞ differentiable manifold of dimension

n is a topological manifold M of

dimension n, together with a C∞

differentiable structure F on M .

Notes:

1. It is possible for a topological manifold

to have more than one distinct

differentiable structures.

2. In this discussion, we have limited

ourselves to C∞ differentiable

structures. With somewhat more work,

we could define Ck structures for

k <∞.

3. We have limited the domains of our

local coordinate systems to be open

subsets of M. This means that the

usual spherical and cylindrical

coordinate systems on R3 do not count

as local coordinate systems by our

definition.
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4. With somewhat more work, we could

define differentiable manifolds with

boundaries.

5. We have limited ourselves to manifolds

of finite dimension. With somewhat

more work, we could define infinite

dimensional differentiable manifolds.

17



Coordinate systems and manifolds

- exercises

←1.
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Manifolds

←•
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Manifolds - exercises

←1.
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