Some Fractals and Fractal Dimensions

 The Cantor set: we take a line segment, and remove the middle third. For each remaining piece, we again remove the middle third, and continue indefinitely.

 To calculate the fractal / Hausdorff / capacity / box-counting dimension, we see how many boxes (circles) of diameter l/r^n we need to cover the set (in this case, we will use r = 3, since it fits nicely).

$D = \text{Lim}(\log(N_r)/\log(1/r))$ $= \log(2) / \log(3)$

r	Nr
l	
1/3	2
1/3^2	2^2
1/3^3	2^3
I/3^n	2^n

 The Koch snowflake: We start with an equilateral triangle. We duplicate the middle third of each side, forming a smaller equilateral triangle. We repeat the process.

 To calculate the fractal / Hausdorff / capacity / box-counting dimension, we again see how many boxes (circles) of diameter (again)1/3ⁿ we need to cover the set.

$D = \text{Lim}(\log(N_r)/\log(1/r))$ $= \log(4) / \log(3)$

r	Nr
l	3
1/3	3 * 4
1/3^2	3 * 4^2
1/3^3	3 * 4^3
I/3^n	3 * 4^n

 The Sierpinski carpet: We start with a square. We remove the middle square with side one third. For each of the remaining squares of side one third, remove the central square. We repeat the process.

$D = \text{Lim}(\log(N_r)/\log(1/r))$ $= \log(8) / \log(3)$

r	Nr
l	
1/3	8
1/3^2	8^2
1/3^3	8^3
I/3^n	8^n

 The Sierpinski gasket: we do a similar process with an equilateral triangle, removing a central triangle. (Note: we could also do a similar thing taking cubes out of a larger cube -- the Sierpinski sponge -- but it's hard to draw :-)

$D = \text{Lim}(\log(N_r)/\log(1/r))$ $= \log(3) / \log(2)$

r	Nr
I	
1/2	3
1/2^2	3^2
1/2^3	3^3
I/2^n	3^n

• We can also remove other shapes.

• •	• •	• •			• •	• •
	• •					
	••			• •		

: :: :: :: :: :: ::

 		1.1	 • •		
 • •	• •		 • •	• •	••
• •					

$D = \text{Lim}(\log(N_r)/\log(1/r)) \\ = \log(4) / \log(4) = 1$

r	Nr
I	
1/4	4
1/4^2	4^2
1/4^3	4^3
I/4^n	4^n

$D = \text{Lim}(\log(N_r)/\log(1/r))$ $= \log(3) / \log(3) = 1$

r	Nr
l	
1/3	3
1/3^2	3^2
1/3^3	3^3
I/3^n	3^n

Relating this to nonlinear dynamical systems

Now let's take a Poincaré section (space slice) through the system

Now let's take a Poincaré section (space slice) through the system

We are building a Cantor set (actually, a slight generalization, a Cantor dust . . .)!

This sort of behavior will be generic for the stretching and folding of the state/phase space for (hyperbolic) dissipative systems ...

Etc.

So, we should expect to see Cantor dusts in many Poincaré sections of these sorts of systems ...

This also suggests that the fractal dimension of an attractor, or of a Poincaré section of the attractor, can give us the possibility of a characteristic number, to identify the attractor, or at least to distinguish between attractors, and thus between dynamical systems ...

Etc.

