
The Bresenham Line Algorithm

http://csustan.csustan.edu/˜ tom

Tom Carter

Computer Science

CSU Stanislaus

tom@csustan.csustan.edu

http://csustan.csustan.edu/˜ tom/Lecture-

Notes/Graphics/Bresenham-Line/Bresenham-Line.pdf

October 8, 2014
1

http://csustan.csustan.edu/~tom
mailto:tom@csustan.csustan.edu
http://csustan.csustan.edu/~tom/Lecture-Notes/Graphics/Bresenham-Line/Bresenham-Line.pdf
http://csustan.csustan.edu/~tom/Lecture-Notes/Graphics/Bresenham-Line/Bresenham-Line.pdf


Our general topics:

Drawing Lines in a Raster. 3

The Bresenham Line Algorithm (simple form). 6

The Bresenham Line Algorithm (all together). 15

Some Additional Notes. 19

2



Drawing Lines in a Raster ←

One of the most fundamental actions in computer graphics is
drawing a (straight) line on a raster device. An optimized
algorithm for drawing such a line is the Bresenham Line
Drawing Algorithm. We want the algorithm to be as fast as
possible, because in practice such an algorithm will be used a
lot. We’ll walk our way through a derivation of the algorithm.

The algorithm was originally published as: Jack E. Bresenham,
Algorithm for Computer Control of a Digital Plotter, IBM
Systems Journal, 4(1):25-30, 1965.

The raster is a two-dimensional array of pixels. We will assume
we want to draw a line from one pixel to another in our raster
((X0, Y0)→ (X1, Y1)) by turning on optimal pixels along the line
connecting the end points.

3



Here’s an example of what this will look like:

A line in a raster

4



We’ll make some simplifying assumptions in the derivation (and
pick up some of them later . . . ).

1. Our pixel coordinates go from left to right, and bottom to
top, the way they do in the first quadrant in mathematics.

2. X0 < X1, and Y0 ≤ Y1.

3. The slope of the line will be between 0 and 1 (i.e.,
0 ≤ m ≤ 1), so we will be drawing the line from lower left to
upper right; and, for any X value between X0 and X1, there
will be exactly one pixel on. (Look at the example above
. . . )

4. Our pixels are either off or on (i.e., no gray-scale . . . ).

5



The Bresenham Line Algorithm (simple

form) ←

With the assumptions we have made, the most straightforward

algorithm is very simple:

For X = X_0 to X_1 step 1

determine Y value

SetPixel(X, Y)

Next X

Thus, if we can figure out a fast way to determine the Y value

to turn on, we will be done.

6



We’ll do this in an iterative fashion. As we step along in the X
direction, we can see that either Y stays the same, or Y
increases by 1. All we really need to do is figure out when to
increment Y.

Algorithm, version 2:

X = X_0

Y = Y_0

SetPixel(X, Y)

While (X <= _X1)

X = X + 1

If we should increment Y

Y = Y + 1

SetPixel(X, Y)

EndWhile

7



Assuming our line is given by y = mx + b, what we are doing is

setting Y = round(mx + b). We will do this iteratively. Each

(unit) step of x will increase y by m. If we let fraction be the

amount y has increased since the last time we incremented,

then we want to increment Y when fraction ≥ 1
2.

8



So our algorithm looks like:

X = X_0

Y = Y_0

fraction = start_value

fraction_increment = (Y_1 - Y_0) / (X_1 - X_0)

SetPixel(X, Y)

While (X <= X_1)

X = X + 1

fraction = fraction + fraction_increment

If fraction >= 1/2

Y = Y + 1

fraction = fraction - 1

SetPixel(X, Y)

EndWhile

9



There are some aspects of this that are slower than we want.
In particular, we really don’t want to be doing any floating
point arithmetic, or floating point comparisons.

First, we have

m =
Y1 − Y0

X1 −X0

To get rid of the fraction (so we can work with integers), we’ll
multiply by X1 −X0.

To get rid of the comparison to 1
2, we’ll multiply by 2.

Putting these two together, we will use

fraction increment = m ∗ 2 ∗ (X1 −X0)

=
Y1 − Y0

X1 −X0
∗ 2 ∗ (X1 −X0)

= 2 ∗ (Y1 − Y0)

10



Also, we generally would prefer to compare to 0 rather than
compare to 1. What this all means is that our algorithm will
now be:

X = X0

Y = Y0

fraction = start_value

fraction_increment = 2 * (Y_1 - Y_0)

SetPixel(X, Y)

While (X <= X1)

X = X + 1

fraction = fraction + fraction_increment

If fraction >= 0

Y = Y + 1

fraction = fraction - 2 * (X_1 - X_0)

SetPixel(X, Y)

EndWhile

11



The one other thing we need to do is figure out start value.

What we really have is that fraction is a decision variable. We

have started with our decision variable (after k steps in the X

direction) as

DV (k) = ((Y0 + (k + 1) ∗m) mod 1)−
1

2

= (((k + 1) ∗m) mod 1)−
1

2

The + 1 reflects the fact that we want to start on the right

hand side of the first pixel (in the X direction), and then move

forward at each step to the right side of the next pixel. The −1
2

normalizes us so that our decision variable will cause us to

increment Y when we have moved up 1
2 a pixel (or more). That

is, we want our decision variable to be between −1
2 and 1

2.
12



When we do the conversion so that we are working in integers,

and compare with 0, our decision variable becomes:

fraction(k) = (((k + 1) ∗m ∗ 2 ∗ (X1 −X0))

mod 2 ∗ (X1 −X0))−
1

2
∗ 2 ∗ (X1 −X0)

= (((k + 1) ∗
Y1 − Y0

X1 −X0
∗ 2 ∗ (X1 −X0))

mod 2 ∗ (X1 −X0))−
1

2
∗ 2 ∗ (X1 −X0)

= (((k + 1) ∗ (Y1 − Y0) ∗ 2)

mod (2 ∗ (X1 −X0)))− (X1 −X0)

= ((k ∗ 2 ∗ (Y1 − Y0) + 2 ∗ (Y1 − Y0))

mod (2 ∗ (X1 −X0))− (X1 −X0)

13



Thus, when k = 0, we have

fraction(0) = ((0 ∗ 2 ∗ (Y1 − Y0) + 2 ∗ (Y1 − Y0))

mod (2 ∗ (X1 −X0))− (X1 −X0)

= ((2 ∗ (Y1 − Y0))

mod (2 ∗ (X1 −X0))− (X1 −X0)

= 2 ∗ (Y1 − Y0)− (X1 −X0)

14



The Bresenham Line Algorithm (all

together) ←

Now we can finalize everything. If we want to deal with

positive or negative slope lines, we just adjust the step size to

be +1 or -1. If we want to deal with slopes greater than 1 (or

less the -1), we just interchange X and Y, and do our step

increment (or decrement) using Y instead of X, etc.

15



So, our final algorithm looks like:

void lineBresenham(int x0, int y0, int x1, int y1)

{

int dx, dy;

int stepx, stepy;

dx = x1 - x0;

dy = y1 - y0;

if (dy < 0) { dy = -dy; stepy = -1; } else { stepy = 1; }

if (dx < 0) { dx = -dx; stepx = -1; } else { stepx = 1; }

dy <<= 1; /* dy is now 2*dy */

dx <<= 1; /* dx is now 2*dx */

if ((0 <= x0) && (x0 < RDim) && (0 <= y0) && (y0 < RDim))

theRaster[x0][y0] = 1;

16



if (dx > dy) {

int fraction = dy - (dx >> 1);

while (x0 != x1) {

x0 += stepx;

if (fraction >= 0) {

y0 += stepy;

fraction -= dx;

}

fraction += dy;

if ((0 <= x0) && (x0 < RDim) && (0 <= y0) && (y0 < RDim))

theRaster[x0][y0] = 1;

}

} else {

int fraction = dx - (dy >> 1);

while (y0 != y1) {

if (fraction >= 0) {

17



x0 += stepx;

fraction -= dy;

}

y0 += stepy;

fraction += dx;

if ((0 <= x0) && (x0 < RDim) && (0 <= y0) && (y0 < RDim))

theRaster[x0][y0] = 1;

}

}

18



Some Additional Notes ←

There are other approaches to deriving the Bresenham Line

Algorithm. Various parts are the same, but some details are

presented differently.

With the assumptions above, we want to choose whether to

keep the Y value the same or to move Y up a step when we

take the next X step. We can make that decision based on the

difference (“distance”) of those two pixels from the “true

value” along the line.

We can let y be the “true value” along the line, and Y (k) be

the Y value we are at (after step k has been taken).

19



We can thus look at what would happen if we keep

Y (k + 1) = Y (k)

D1(k) = y − Y (k)

versus setting Y (k + 1) = Y (k) + 1:

D2(k) = (Y (k) + 1)− y.

We can use these to make our decision:

• If D1(k) ≤ D2(k), we move to (X(k) + 1, Y (k)) (i.e., move

right)

• if D1(k) > D2(k), we move to (X(k) + 1, Y (k) + 1) (i.e.,

move right and up)

20



Said differently (comparing with 0 . . . ):

• If D1(k)−D2(k) ≤ 0, we move to (X(k) + 1, Y (k)) (i.e.,
move right)

• if D1(k)−D2(k) > 0, we move to (X(k) + 1, Y (k) + 1) (i.e.,
move right and up)

We can calculate (using y = m ∗ x + b):

D1(k)−D2(k) = (y − Y (k))− ((Y (k) + 1)− y.)

= y − Y (k)− (Y (k) + 1) + y

= 2 ∗ y − 2 ∗ Y (k)− 1

= 2 ∗ (m ∗ (X(k) + 1) + b)− 2 ∗ Y (k)− 1

= 2 ∗m ∗ (X(k) + 1)− 2 ∗ Y (k) + 2 ∗ b− 1

21



Substituting in b = Y0 −mX0 and m = Y1−Y0
X1−X0

= ∆Y
∆X , we have

D1(k)−D2(k) = 2m(X(k) + 1)− 2Y (k) + 2b− 1

= 2m(X(k) + 1)− 2Y (k) + 2(Y0 −mX0)− 1

= 2
∆Y

∆X
(X(k) + 1)− 2Y (k) + 2(Y0 −

∆Y

∆X
X0)− 1

We don’t want to do division (floating point operation), so we

let D(k) = ∆X(D1(k)−D2(k)), and we have:

D(k) = ∆X(D1(k)−D2(k))

= ∆X(2
∆Y

∆X
(X(k) + 1)− 2Y (k) + 2(Y0 −

∆Y

∆X
X0)− 1)

= 2∆Y (X(k) + 1)− 2∆X ∗ Y (k) + 2∆X ∗ Y0 − 2∆Y ∗X0 −∆X

= 2∆Y ∗X(k)− 2∆X ∗ Y (k)

+ 2∆Y + 2∆X ∗ Y0 − 2∆Y ∗X0 −∆X

22



We can write this as:

D(k) = 2∆Y ∗X(k)− 2∆X ∗ Y (k) + c

where c = 2∆Y + 2∆X ∗ Y0 − 2∆Y ∗X0 −∆X is a constant,
depending only on the input values of (X0, Y0) and (X1, Y1).

Note that since we are assuming X0 < X1, we have ∆X > 0,
and so the decision criterion is still the same.

Now all we need to do is calculate D(k), compare with 0, and
we know which pixel to select next. We can actually do this
iteratively (note: X(k + 1)−X(k) = 1):

D(k + 1)−D(k) = (2∆Y ∗X(k + 1)− 2∆X ∗ Y (k + 1) + c)

− (2∆Y ∗X(k)− 2∆X ∗ Y (k) + c)

= 2∆Y (X(k + 1)−X(k))− 2∆X((Y (k + 1)− Y (k))

= 2∆Y − 2∆X((Y (k + 1)− Y (k))

23



There are two cases for (Y (k + 1)− Y (k). Either

(Y (k + 1) = Y (k) (if D(k) ≤ 0), or (Y (k + 1) = Y (k) + 1.

Thus, the increment in D(k) is 2∆Y if D(k) ≤ 0, or

2∆Y − 2∆X otherwise.

The only other thing we need is to find the initial value, D(0).

We can calculate this as

D(0) = 2∆Y ∗X(0)− 2∆X ∗ Y (0) + c

= 2∆Y ∗X0 − 2∆X ∗ Y0 + c

= 2∆Y ∗X0 − 2∆X ∗ Y0 + 2∆Y + 2∆X ∗ Y0 − 2∆Y ∗X0 −∆X

= 2∆Y −∆X

To top ←
24


	Drawing Lines in a Raster
	The Bresenham Line Algorithm (simple form)
	The Bresenham Line Algorithm (all together)
	Some Additional Notes

