
to Draw a Circle

with a Digital Differential Algorithm

http://csustan.csustan.edu/˜ tom

Tom Carter

Computer Science

CSU Stanislaus

tom@csustan.csustan.edu

http://csustan.csustan.edu/˜

tom/Lecture-Notes/Graphics/DDA-circle/DDA-circle.pdf

October 9, 2014
1

http://csustan.csustan.edu/~tom
mailto:tom@csustan.csustan.edu
http://csustan.csustan.edu/~tom/Lecture-Notes/Graphics/DDA-circle/DDA-circle.pdf
http://csustan.csustan.edu/~tom/Lecture-Notes/Graphics/DDA-circle/DDA-circle.pdf

Our general topics:

Drawing a Circle in a Raster. 3

The DDA Circle Algorithm (first steps). 7

The DDA Circle Algorithm. 16

2

Drawing a Circle in a Raster ←

There are times when we want to draw a circle on a raster

device. We’ll develop a reasonably optimized algorithm for

doing this. The approach we’ll take is to develop a digital

differential algorithm.

The raster is a two-dimensional array of pixels. We will assume

we are given a center (CX,CY) (in pixel coordinates) and a

radius R (also in pixel coordinates).

One nice thing about a circle is that it has many symmetries.

In fact, we can draw a circle by specifying pixels we want to

turn on in just one octant, say X = 0 to X = Y .

3

Here’s an example of what this will look like:

A circle in a raster
4

Using symmetries, we only work in one octant:

Symmetries - just one octant

5

We’ll make some simplifying assumptions in the derivation.

1. Our pixel coordinates go from left to right, and bottom to

top, the way they do in the first quadrant in mathematics.

2. Our pixels are square (so we don’t need to worry about

aspect ratio . . .).

3. Our pixels are either off or on (i.e., no gray-scale . . .).

6

The DDA Circle Algorithm (first steps)

←

To keep things simple, we’ll do our calculations as though

center of the circle is at (0,0). We’ll assume we have a

procedure (circlePoints(CX,CY,X, Y)) that takes advantage of

the symmetries, and turns on 8 (or 4 . . .) pixels once we

specify the center of the circle (CX,CY) and the pixel to start

with relative to the center.

7

With the assumptions we have made, our stepwise algorithm

will have the outline:

X = 0

Y = R

circlePoints(CX, CY, X, Y)

While (X < Y)

X = X + 1

determine Y value

circlePoints(CX, CY, X, Y)

EndWhile

Thus, if we can figure out a fast way to determine the Y value

to turn on, we will be done.

8

We’ll do this in an iterative fashion. As we step along in the X
direction, we can see that either Y stays the same, or Y
decreases by 1. All we really need to do is figure out when to
decrement Y.

Algorithm, version 2:

X = 0

Y = R

circlePoints(CX, CY, X, Y)

While (X < Y)

X = X + 1

If we should decrement Y

Y = Y - 1

EndIf

circlePoints(CX, CY, X, Y)

EndWhile

9

We need to develop a decision function (or decision variable),

sometimes called an indicator variable, that will tell us when to

decrement Y.

Let’s start with the function

F (x, y) = x2 + y2 − r2

For any point (x, y) on the circle, we have F (x, y) = 0. If

F (x, y) < 0, the point is inside the circle, and if F (x, y) > 0, the

point is outside the circle.

So, suppose the current pixel is (X,Y). We need to decide

whether the next pixel should be (X + 1, Y) or (X + 1, Y − 1).

We’ll create a decision variable that looks at the “average” of

10

the two pixels we are considering, call it M , and checks

whether M is inside or outside the circle:

D = F (M)

= F (X + 1, Y −
1

2
)

= (X + 1)2 + (Y −
1

2
)2 −R2

= X2 + 2X + 1 + Y 2 − Y +
1

4
−R2

If D < 0, then M is still inside the circle, so we don’t want to

decrement Y yet.

We don’t want to calculate D at each step (floating point

operations, etc.), but instead want to update the value

incrementally.

11

There are two possibilities.

If we didn’t decrement Y, then the new value of D will be

Dnew = (X + 2)2 + (Y −
1

2
)2 −R2

= X2 + 4X + 4 + Y 2 − Y +
1

4
−R2

and the increment in D will then be

Dnew −Dold = X2 + 4X + 4 + Y 2 − Y +
1

4
−R2

− (X2 + 2X + 1 + Y 2 − Y +
1

4
−R2)

= 2X + 3

12

If we did decrement Y, then the new value of D will be

Dnew = (X + 2)2 + (Y −
3

2
)2 −R2

= X2 + 4X + 4 + Y 2 − 3Y +
9

4
−R2

and the increment in D will then be

Dnew −Dold = X2 + 4X + 4 + Y 2 − 3Y +
9

4
−R2

− (X2 + 2X + 1 + Y 2 − Y +
1

4
−R2)

= 2X − 2Y + 5.

13

The other thing we need to do is establish the starting value

for D:

D0 = F (1, R−
1

2
)

= 1 + (R−
1

2
)2 −R2

= 1 + R2 −R +
1

4
−R2

=
5

4
−R

Given that we want to work with integers (not floating point),

we will go ahead and use D0 = 1−R.

Technically, this means that we should do the comparison

D < −1
4 for our decision variable, but since we are working with

integers, this is no different from D < 0.

14

We can thus put together our algorithm as:

X = 0

Y = R

D = 1 - R

circlePoints(CX, CY, X, Y)

While (X < Y)

If D < 0

D = D + 2 * X + 3

Else

Y = Y - 1

D = D + 2 * (X - Y) + 5

EndIf

X = X + 1

circlePoints(CX, CY, X, Y)

EndWhile

15

The DDA Circle Algorithm ←

Our final algorithm looks like this:

void circleDDA(int xCenter, int yCenter, int radius)

{

int x;

int y;

int p;

x = 0;

y = radius;

p = 1 - radius; /**/

circlePoints(xCenter, yCenter, x, y);

16

while (x < y) {

x++;

if (p < 0) {

p += 2*x+3; /**/

} else {

y--;

p += 2*(x-y)+ 5; /**/

}

circlePoints(xCenter, yCenter, x, y);

}

}

17

The one other piece is the “circlePoints” procedure, that takes

advantage of the symmetries of the circle to plot 8 (or 4)

points.

void circlePoints(int cx, int cy, int x, int y)

{

int cxpx = cx + x;

int cxmx = cx - x;

int cxpy = cx + y;

int cxmy = cx - y;

int cypx = cy + x;

int cymx = cy - x;

int cypy = cy + y;

int cymy = cy - y;

18

if (x == 0) {

if ((0 <= cx) && (cx < RDim)

&& (0 <= (cypy)) && ((cypy) < RDim))

theRaster[cx][cypy] = 1;

if ((0 <= cx) && (cx < RDim)

&& (0 <= (cymy)) && ((cymy) < RDim))

theRaster[cx][cymy] = 1;

if ((0 <= (cxpy)) && ((cxpy) < RDim)

&& (0 <= (cy)) && ((cy) < RDim))

theRaster[cxpy][cy] = 1;

if ((0 <= (cxmy)) && ((cxmy) < RDim)

&& (0 <= (cy)) && ((cy) < RDim))

theRaster[cxmy][cy] = 1;

} else

if (x == y) {

if ((0 <= (cxpx)) && ((cxpx) < RDim)

19

&& (0 <= (cy + y)) && ((cy + y) < RDim))

theRaster[cxpx][cy + y] = 1;

if ((0 <= (cxmx)) && ((cxmx) < RDim)

&& (0 <= (cy + y)) && ((cy + y) < RDim))

theRaster[cxmx][cy + y] = 1;

if ((0 <= (cxpx)) && ((cxpx) < RDim)

&& (0 <= (cymy)) && ((cymy) < RDim))

theRaster[cxpx][cymy] = 1;

if ((0 <= (cxmx)) && ((cxmx) < RDim)

&& (0 <= (cymy)) && ((cymy) < RDim))

theRaster[cxmx][cymy] = 1;

} else

if (x < y) {

if ((0 <= (cxpx)) && ((cxpx) < RDim)

&& (0 <= (cy + y)) && ((cy + y) < RDim))

theRaster[cxpx][cy + y] = 1;

20

if ((0 <= (cxmx)) && ((cxmx) < RDim)

&& (0 <= (cy + y)) && ((cy + y) < RDim))

theRaster[cxmx][cy + y] = 1;

if ((0 <= (cxpx)) && ((cxpx) < RDim)

&& (0 <= (cymy)) && ((cymy) < RDim))

theRaster[cxpx][cymy] = 1;

if ((0 <= (cxmx)) && ((cxmx) < RDim)

&& (0 <= (cymy)) && ((cymy) < RDim))

theRaster[cxmx][cymy] = 1;

if ((0 <= (cx + y)) && ((cx +y) < RDim)

&& (0 <= (cypx)) && ((cypx) < RDim))

theRaster[cx + y][cypx] = 1;

if ((0 <= (cxmy)) && ((cxmy) < RDim)

&& (0 <= (cypx)) && ((cypx) < RDim))

theRaster[cxmy][cypx] = 1;

if ((0 <= (cx + y)) && ((cx + y) < RDim)

21

&& (0 <= (cymx)) && ((cymx) < RDim))

theRaster[cx + y][cymx] = 1;

if ((0 <= (cxmy)) && ((cxmy) < RDim)

&& (0 <= (cymx)) && ((cymx) < RDim)) /**/

theRaster[cxmy][cymx] = 1;

}

}

To top ←

22

	Drawing a Circle in a Raster
	The DDA Circle Algorithm (first steps)
	The DDA Circle Algorithm

