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Our general topics: ←

} Why linear algebra

} Vector spaces (ex)

} Examples of vector spaces (ex)

} Subspaces (ex)

} Linear dependence and independence (ex)

} Span of a set of vectors (ex)

} Basis for a vector space (ex)

} Linear transformations (ex)

} Morphisms – mono, epi, and iso (ex)

} Linear operators (ex)

} Normed linear spaces (ex)

} Eigenvectors and eigenvalues (ex)

} Change of basis (ex)

} Trace and determinant (ex)

} References

(ex): exercises.
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Why linear algebra ←

• Linear models of phenomena are pervasive

throughout science. The techniques of

linear algebra provide tools which are

applicable in a wide variety of contexts.

Beyond that, linear algebra courses are

often the transition from lower division

mathematics courses such as calculus,

probability/statistics, and elementary

differential equations, which typically

focus on specific problem solving

techniques, to the more theoretical

axiomatic and proof oriented upper

division mathematics courses.

I am going to stay with a generally

abstract, axiomatic presentation of the

basics of linear algebra. (But I’ll also try

to provide some practical advice along the

way . . . :-)
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Vector spaces ←

• The first thing we need is a field F of
coefficients for our vector space. The
most frequently used fields are the real
numbers R and the complex numbers C.
A field F = (F,+, ∗,−, −1,0,1) is a
mathematical object consisting of a set of
elements (F), together with two binary
operations (+, ∗), two unary operations
(−, −1), and two distinguished elements 0
and 1 of F, which satisfy the fundamental
properties:

1. F is closed under the four operations:

+ : F× F→ F
∗ : F× F→ F
− : F→ F
−1 : F′ → F′ F′ = {a ∈ F|a 6= 0}

Of course, we usually write
a + b, a ∗ b,−a, and a−1 instead of
+(a, b), ∗(a, b),−(a), and −1(a).
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2. ‘+’ and ‘∗’ are commutative and

associative, and satisfy the distributive

property. That is, for a, b, c ∈ F:

a + b = b + a

a ∗ b = b ∗ a

(a + b) + c = a + (b + c)

(a ∗ b) ∗ c = a ∗ (b ∗ c)

a ∗ (b + c) = a ∗ b + a ∗ c

3. 0 is the identity element and ‘−’ is the

inverse for addition. 1 is the identity

element and ‘a−1’ is the inverse for

multiplication. That is, for a ∈ F:

a + 0 = a

a + (−a) = 0

a ∗ 1 = a

a ∗ (a−1) = 1 (a 6= 0)
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4. Although we won’t need it for most of

linear algebra, I’ll mention that R and C
are both complete (Cauchy sequences

have limits), and R is fully ordered

(a < b or b < a or a = b for all a, b ∈ R).

5. As needed, we will identify R as a

subfield of C, and we will typically

write elements of C as a + bi, where a

and b are real and i2 = −1.

6. Although R and C are the most

frequently used coefficient fields, there

are many other fields such as Q, the

rationals, and the finite fields Z/pZ for

p a prime.
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• If we leave out the requirement that

a ∗ b = b ∗ a, we get what are called skew

fields. An important example of a skew

field is H, the quaternions (also called the

hamiltonians) which contains additional

square roots of −1, i2 = j2 = k2 = −1,

and ij = k, jk = i, ki = j, but ij = −ji,

jk = −kj, and ki = −ik. We typically

write quaternions either in the form

a + bi + cj + dk with a, b, c, d ∈ R, or

α + βj with α, β ∈ C.
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• We are then ready for the definition. A
vector space V = (V, F,+,−, ∗, ~0) over a
field F is a set V of elements (called
vectors) together with a distinguished
element ~0, two binary operations, and a
unary operation:

+ : V × V → V

− : V → V

∗ : F× V → V

For u, v, w ∈ V , and a, b ∈ F, these
operations satisfy the properties:

v + w = w + v

(u + v) + w = u + (v + w)

v + ~0 = v

v + (−v) = ~0

1 ∗ v = v

a ∗ (u + v) = (a ∗ u) + (a ∗ v)

(a + b) ∗ v = (a ∗ v) + (b ∗ v)

(a ∗ b) ∗ v = a ∗ (b ∗ v)

The elements of the field F are called the
scalars, or coefficients of the vector
space.
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• From the basic properties listed above, we
can prove a variety of additional
properties, such as:

0 ∗ v = ~0

a ∗ ~0 = ~0

(−1) ∗ v = −v

We can also prove that the additive
identity ~0 is unique, as is the additive
inverse −v.

• We will usually simplify the notation, and
write av instead of a ∗ v. Furthermore,
although it is important to distinguish the
scalar 0 from the vector ~0, we will
typically write the vector in the simple
form 0.

• If F = R, we call V a real vector space,
and typically write the scalars as a, b, c. If
F = C, we call V a complex vector space,
and often write the scalars as α, β, γ.

9



Exercises: Vector spaces←

1. Using the basic properties listed above,

prove the additional properties:

(a) 0 ∗ v = ~0

(b) a ∗ ~0 = ~0

(c) (−1) ∗ v = −v

(d) −(−v) = v

(e) For a ∈ F and v ∈ V, av = ~0 iff a = 0 or

v = ~0.

2. Prove that the additive identity ~0 is

unique.

3. Prove that the additive inverse −v is

unique.
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Examples of vector spaces
←

• The first main example of a real vector

space is Rn, the Cartesian product of n

copies of the real line. An element of Rn

looks like (a1, a2, . . . , an). When we add

two vectors, we get

(a1, a2, . . . , an) + (b1, b2, . . . , bn)

= (a1 + b1, a2 + b2, . . . , an + bn).

When we multiply by a scalar a ∈ R, we

get

a ∗ (a1, a2, . . . , an) = (aa1, aa2, . . . , aan).

• Similary, we have the complex vector

space Cn, with vector addition and scalar

multiplication defined the same way.
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• Note that we can also think of Cn as a

real vector space, if we restrict the scalars

to R.

• Let F∞ = {(a0, a1, . . .)}, with

(a0, a1, . . .) + (b0, b1, . . .)

= (a0 + b0, a1 + b1, . . .),

and a ∗ (a0, a1, . . .) = (a ∗ a0, a ∗ a1, . . .).

This is a vector space over F.

• For a scalar field F, we can define F[x] to

be the set of all polynomials with formal

variable x, and coefficients in F. This is a

vector space over F, the coefficient field.

Each polynomial is a vector. Vector

addition is just polynomial adddition, and

scalar multiplication just multiplies each

coefficient in the polynomial by the scalar:

a ∗ (a0 + a1x1 + . . . anxn)

= aa0 + aa1x1 + . . . aanxn.
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• For a scalar field F, let Fn[x] be the set of
all polynomials of degree ≤ n with
coefficients in F. We can also let F∞[x]
be the vector space of (formal) power
series over F. These are also vector
spaces over F.

• Let C0(R) be the set of all continuous
functions with domain and range the real
numbers. That is:
C0(R) = {f : R→ R | f is continuous}.
We can define an addition operation on
this set. To specify the sum of two
functions, we must specify the sum at
each point in the domain. If f, g ∈ C0(R),
we define f + g for each x by

(f + g)(x) = f(x) + g(x).

We define scalar multiplication pointwise
also: (a ∗ f)(x) = a ∗ (f(x)).

C0(R) thus becomes a real vector space,
where each continuous function is a
vector in the space.
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• Let Cn(R) be the set of all continuous
real functions whose first n derivatives are
also continuous, and define addition and
scalar multiplication pointwise. Similarly,
we can define C∞(R) as functions with all
derivatives continuous. Again we get real
vector spaces.

• Let C0[0,1] be the set of all continuous
functions with domain the closed interval
[0,1], and range R. We can also define
Cn[0,1] to be those functions with first n

derivatives continuous, and C∞[0,1] with
all derivatives continuous. We can also
generalize to subsets of R other than the
interval [0,1]. With pointwise addition
and scalar multiplication, these are each
real vector spaces.

• We get can get similar complex vector
spaces if we use C instead of R in
examples like those above.
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Exercises: Examples of
vector spaces ←

1. Show that each of the examples listed in

this section is a vector space.

2. Consider the set of points in R2 of the

forms (x,0), x ∈ R, and (0, y), y ∈ R (i.e.,

the union of the X-axis and the Y-axis).

Show that with the usual vector addition

in R2, this is not a vector space over R.

3. Consider the set R2 with usual vector

addition:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

but with “scalar multiplication” given by

a ∗ (x, y) = (ax, y)

for a ∈ R. Show that this is not a vector

space over R.
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Subspaces ←

• If V is a vector space over F, a subset

U ⊂ V is called a vector subspace of V if

U is a vector space over F using the same

vector addition and scalar multiplication

as in V . Often, in context, we will just

call U a subspace of V .

• Most often, given a subset U ⊂ V , we will

just let U inherit the vector addition and

scalar multiplication operations from V .

Hence, most of the vector space

properties will come for free. What may

not come for free, however, is whether the

subset U is closed under the operations.
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Thus, when we inherit the operations

from V , we will have that

+ : U × U → V,

and

∗ : F× U → V,

whereas, what we need is

+ : U × U → U,

and

∗ : F× U → U.

In order for U to be a vector subspace, we

must be sure that doing the operations

will leave us in the subset U .
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• Examples of subspaces:

1. {~0} is a subspace of V for any vector
space V .

2. If m ≤ n, then Fm (identified with
{(a1, a2, . . . , am,0, . . . ,0)}) is a subspace
of Fn.

3. If m ≤ n, then Fm[x] is a subspace of
Fn[x], and a subspace of F[x].

4. If m ≤ n, then Cn(R) and C∞(R) are
subspaces of Cm(R) .

5. In R2, let U = {(x, y) | y = 3x}. Then
U is a subspace.

6. More generally, in Rn, fix a1, a2, . . . , an,
and let U = {(x1, x2, . . . , xn) |
a1x1 + a2x2 + . . . + anxn = 0}.
Then U is a subspace.

7. If U1 and U2 are subspaces, so is
U1 ∩ U2.
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• Examples which are not subspaces:

1. In R2, let U = {(x, y) | x = 0 or y = 0}
(i.e., U is the union of the x-axis and
the y-axis). Then U is not a subspace,
since the two vectors (1,0) and (0,1)
are in U , but (1,0) + (0,1) = (1,1) is
not in U .

2. In R2, let U = {(x, y) | x and y are both
rational numbers}. Then U is not a
subspace, since (1,1) is an element of
U , but

√
2 ∗ (1,1) = (

√
2,
√

2) is not an
element of U .

3. In Rn, fix a1, a2, . . . , an, and let
U = {(x1, x2, . . . , xn) | a1x1 + a2x2 +
. . . + anxn = 2}. Then U is not a
subspace, since, for example, ~0 is not
an element of U .

4. In general, if U1 and U2 are subspaces,
U1 ∪ U2 is not a subspace (except in
special cases, such as when U1 ⊂ U2).
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• If U1 and U2 are both subspaces of a

vector space V , we can define the

subspace which is the sum of the two

subspaces by:

U1 + U2 = {u1 + u2 | u1 ∈ U1 and u2 ∈ U2}.

• If in addition U1 ∩ U2 = {0}, then each

element u ∈ U1 + U2 can be written in a

unique way as u = u1 + u2. In this case,

we call the sum of U1 and U2 a direct

sum, and write it U1 ⊕ U2.

• These ideas generalize in a

straightforward way to U1 + · · ·+ Un and

U1 ⊕ · · · ⊕ Un for a finite number of

subspaces, and U1 + U2 + · · · and

U1 ⊕ U2 ⊕ · · · for countably many

subspaces.
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Exercises: Subspaces ←

1. Show that each of the examples identified
in this section as a subspace actually is a
vector subspace.

2. Which of the following are vector
subspaces of R3?

(a) {(x1, x2, x3) ∈ R3 | 3x1 + 2x2 − x3 = 0}

(b) {(x1, x2, x3) ∈ R3 | 3x1 + 2x2 − x3 = 4}

(c) {(x1, x2, x3) ∈ R3 | x1x2x3 = 0}

3. Suppose that U is a vector subspace of V ,
and V is a vector subspace of W . Show
that U is a vector subspace of W .

4. Show that the intersection of any
collection of vector subspaces of V is a
vector subspace of V .
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5. Let

l2 = {(ai) ∈ R∞ |
∞∑

i=0

|ai|2 <∞}.

Show that l2 is a vector subspace of R∞.

6. Let

L2 = {f ∈ C0(R) |
∫ ∞
−∞
|f(x)|2dx <∞}.

Show that L2 is a vector subspace of

C0(R).
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Linear dependence and
independence ←

From here on, we’ll assume that U and V are
vector spaces over a field F.

• Suppose that v1, v2, . . . , vn are vectors in
V , and that for some a2, a3, . . . , an ∈ F,

v1 = a2v2 + a3v3 + . . . + anvn.

Then we say that v1 is linearly dependent
on v2, . . . , vn. Note that if we move v1 to
the other side, and let a1 = −1, we have
a1v1 + a2v2 + . . . + anvn = 0, and not all
of the ai are zero (in particular, a1 6= 0).

This motivates a general definition: a set
S of vectors in a vector space V is called
linearly dependent if, for some n > 0,
and distinct v1, v2, . . . vn ∈ S, there exist
a1, a2, . . . , an ∈ F, not all 0, with

a1v1 + a2v2 + . . . + anvn = 0.
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• The flip side of this definition is the

following: a set S of vectors in a vector

space V is called linearly independent if,

given distinct v1, v2, . . . vn ∈ S, the only

way for a1, a2, . . . , an ∈ F to give

a1v1 + a2v2 + . . . + anvn = 0

is if every one of the ai are zero.

A useful way to think about this is that a

set S of vectors is linearly independent if

no individual one of the vectors is linearly

dependent on a finite number of the rest

of them.

• Some examples:

1. In R2, the sets of vectors

{(1,0), (0,1)}, {(1,2), (1,3)}, {(1,0)}
and {(2,2), (3,2)} are each linearly

independent sets.
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2. In R2, none of the sets of vectors

{(1,0), (2,0)}, {(1,0), (0,1), (1,1)},
{(0,0), (0,1)}, {(0,0)},
{(1,2), (2,3), (3,4), (4,1)}, nor

{(1,2), (3,4), (2,1)} is a linearly

independent set.

3. In any vector space, if a set of vectors

contains the 0 vector, the set is not

linearly independent.

4. In C0(R), if

f1(1) = f2(2) = . . . = fn(n) = 1, but

fi(j) = 0 for i 6= j, then the set of

functions {f1, f2, . . . , fn} is linearly

independent.

5. In C∞(R), the set of functions

{cos(nx) | n = 0,1,2, . . .} is a linearly

independent set.

6. The empty set, {}, is a linearly

independent set.
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• Mathematics is an extremely precise
language. These two sentences do not
mean the same thing:

1. The set {v1, v2, . . . , vn} of vectors is
linearly independent.

2. {v1, v2, . . . , vn} is a set of linearly
independent vectors.

One of the hardest parts of doing
mathematics is developing your
mathematical intuition. It is tempting to
imagine that intuition is what you have
before you know anything, but that is
nonsense. Intuition is just the automatic
part of your knowledge, derived from your
past experience. Becoming better at
mathematics involves learning new
mathematics, and then integrating that
new knowledge into your intuition. Doing
that takes care, precision, and lots of

practice!
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Exercises: Linear
dependence and

independence ←

1. Verify the statements in each of the six

examples in this section.

2. Suppose that P0, P1, . . . , Pn are

polynomials in Fn[x], and Pi(1) = 0 for

i = 0,1, . . . , n. Show that {P0, P1, . . . , Pn}
is not linearly independent in Fn[x].

3. In C∞(R), show that each of these sets of

functions is linearly independent:

(a) {xn | n = 0,1,2, . . .}.

(b) {sin(nx) | n = 0,1,2, . . .}.

(c) {enx | n = 0,1,2, . . .}.
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Span of a set of vectors←

• If S is a set of vectors in the vector space
V over F, we define the span of the set S

by:

span(S) = {a1v1 + a2v2 + . . . + anvn |

ai ∈ F, vi ∈ S, n > 0}.

This says that span(S) is the set of all
vectors that can be written as finite linear
combinations of the vectors in S.

• Examples:

1. In R1, span({(1)}) is all of R1.

2. In R3, span({(1,0,0), (0,1,0)}) is the
x− y plane. Similarly,
span({(1,0,0), (0,0,1)}) is the x− z

plane, span({(0,1,0), (0,0,1)}) is the
y − z plane, and
span({(1,0,0), (0,1,0), (0,0,1)}) is all
of R3.
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3. Still in R3, span({(1,2,0), (2,1,0)}) is
the x− y plane, span({(1,0,0)}) is the
x axis,
span({(1,0,0), (1,1,0), (1,1,1)}) is all
of R3,
span({(1,2,3), (1,1,0), (1,1,1), (2,1,4)})
is all of R3, and
span({(1,2,0), (1,1,0), (3,1,0), (2,1,0)})
is the x− y plane.

4. In Fn[x],
span({1, x1, x2, . . . , xn}) = Fn[x].

5. In F[x], span({1, x1, x2, . . .}) = F[x].

6. In C0(R), span({f1(x) = 1, f2(x) = x})
is the set of all linear functions,
y = mx + b.

7. For any set S, span(S) is a subspace.

8. In particular, span(S) is sometimes
defined to be the smallest subspace of
V containing S, or the intersection of
all subspaces of V that contain S.
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Exercises: Span of a set
of vectors ←

1. Verify the statements in each of the eight

examples in this section.

2. Show that if span({v0, v1, . . . , vn}) = V ,

then

span({v0−v1, v1−v2, . . . , vn−1−vn, vn}) = V .
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Basis for a vector space←

• Suppose S is an ordered set (or list) of
vectors in a vector space V . Suppose
further that:

1. S is linearly independent, and

2. span(S) = V .

Then we call S a basis for the vector
space V .

• Given a basis S for the vector space V ,
every vector v ∈ V , v 6= 0, can be written
in a unique way as:

v = a1v1 + a2v2 + . . . + anvn

with a1, a2, . . . , an ∈ F, ai 6= 0, and
v1, v2, . . . , vn ∈ S. For uniqueness, we take
the vi to be distinct, and to be in the
order they appear in S. We are writing
each v as a finite linear combination of
the basis vectors.
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• Examples:

1. In F3, the ordered set

S = ((1,0,0), (0,1,0), (0,0,1)) is a

basis (often called the standard

basis). This generalizes in the obvious

way to Fn.

2. In F3, the ordered set

S = ((1,0,0), (1,1,0), (1,1,1)) is a

basis. So is ((1,2,3), (2,1,3), (1,2,2)).

3. In general, in Fn any linearly

independent ordered set

S = (v1, v2, . . . , vn) of size n is a basis.

4. (1, x, x2, x3, . . .) is a basis for F[x].

5. If S is a linearly independent ordered

set, then S is a basis for span(S).
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• If a vector space V has a finite basis

S = (v1, v2, . . . , vn), we say that V is finite

dimensional, and we define the dimension

of V by:

dim(V ) = n.

We define dim({~0}) = 0.

Note that if a vector space V has a finite

basis of size n, then every basis for V

contains n vectors, and thus the definition

makes sense.

For example, dim(Fn) = n for any field F
and n > 0.

We also have that dim(Fn[x]) = n + 1.
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• If a vector space V has a finite or
countably infinite basis S, then we can
uniquely represent each vector v with
respect to S by a list of the form:
v = (b1, b2, . . . , bn) in the finite case, or
v = (b1, b2, . . .) in the infinite case.

Each bi is either the non-zero coefficient
corresponding with the ith element of S
from the unique representation described
above, or 0 if the basis element does not
appear there. In the infinite case, only
finitely many of the bi are non-zero.

We represent 0 by (0,0, . . . ,0) in the finite
case, and by (0,0, . . .) in the infinite case.

• In these cases, we also have, for vi ∈ S,
that

V = span(v1)⊕ · · · ⊕ span(vn)

in the finite case, and

V = span(v1)⊕ span(v2)⊕ · · ·
in the countably infinite case.
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Exercises: Basis for a
vector space ←

1. Verify the statements in each of the five

examples in this section.

2. Let U be the subspace of R6 given by

U = {(x1, x2, x3, x4, x5, x6) ∈ R6 |
2x1 + 3x3 = 0 and x2 = 4x5}.

Find a basis for U .

3. Show that if U1 and U2 are subspaces of a

finite dimensional vector space, then

dim(U1 + U2) =

dim(U1) + dim(U2)− dim(U1 ∩ U2).
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Linear transformations ←

• If U and V are vector spaces over F, then
a function T : U → V is called a linear
transformation or linear mapping if

T (a1u1 + a2u2) = a1T (u1) + a2T (u2)

for all a1, a2 ∈ F and u1, u2 ∈ U .

An equivalent pair of conditions is that
T (u1 + u2) = T (u1) + T (u2), and
T (au) = aT (u).

• For a linear transformation T : U → V , we
call U the domain and V the codomain
(or sometimes range) of T . We also
define the kernel (or null space) of T by:

ker(T ) = {u ∈ U | T (u) = 0}.
Further, we define the image (or
sometimes range – be careful here!) of T

by:

im(T ) = {v ∈ V | v = T (u) for some u ∈ U}.
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• For a linear transformation T : U → V we

have the nice properties:

1. ker(T ) is a subspace of U , and im(T ) is

a subspace of V . (ex)

2. If U is finite dimensional, then

dim(U) = dim(ker(T )) + dim(im(T )).

(ex)

3. If U is finite dimensional with basis

(u1, u2, . . . , un), and V is finite

dimensional with basis (v1, v2, . . . , vm),

then T is determined by its effect on

the basis elements ui. There exist aij,

1 ≤ i ≤ m, 1 ≤ j ≤ n with:

T (uj) = a1jv1 + a2jv2 + . . . + amjvm,

and in general, if u =
∑

j bjuj, then

T (u) =
m∑

i=1

n∑
j=1

aijbjvi.
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4. Thus, given particular bases for U and

V , we can represent the linear

transformation T by the matrix

[T ] =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... ... ...

am1 am2 . . . amn


or [T ]ij = aij.

5. If we represent the vector u ∈ U by the

column matrix [b1, b2, . . . , bn]t, then we

have

[T (u)] = [T ][u]

=


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... ... ...

am1 am2 . . . amn




b1
b2
...

bn



=


a11b1 + a12b2 + . . . + a1nbn

a21b1 + a22b2 + . . . + a2nbn
...

am1b1 + am2b2 + . . . + amnbn
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6. Sometimes it is more convenient to

use the Einstein summation

conventions, where we would write:

T (u)i = T
j
i uj

with implied summation over the

repeated upper and lower indices.

7. If T1 : U → V and T2 : U → V are two

linear transformations, we can define

the sum of the two transformations as

(T1 + T2)(u) = T1(u) + T2(u),

and we can define scalar multiplication

of a linear transformation T by a as

(a ∗ T )(u) = a ∗ (T (u)).

We can thus define L(U, V ) to be the

space of all linear transformations from

U to V . We define the zero

transformation 0 : U → V by 0(u) = ~0.

With these definitions, L(U, V ) is a

vector space. (ex)
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8. Given particular bases for U and V , the

matrix representation of T1 + T2 is

given by: [T1 + T2] = [T1] + [T2].

9. If U and V are finite dimensional, then

L(U, V ) is also finite dimensional, and

dim(L(U, V )) = dim(U) ∗ dim(V ).

(ex)

10. If T : U → V and S : V →W are linear

transformations, then the composition

S ◦ T : U →W is also a linear

transformation. (ex)

Recall that (S ◦ T )(u) = S(T (u)).

Given particular bases for U , V , and

W , the matrix representation of S ◦ T is

the matrix product [S ◦ T ] = [S][T ]. We

usually abbreviate S ◦ T as ST .

It is worth noting that unless W ⊆ U , it

doesn’t even make sense to talk about

T ◦ S.
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11. The matrix of the composition of two

linear transformations is given by the

product of the two matrices, given by:

[ST ] = [S][T ] =
a11 a12 . . . a1n
a21 a22 . . . a2n
... ... ... ...

am1 am2 . . . amn




b11 b12 . . . b1p
b21 b22 . . . b2p
... ... ... ...

bn1 bn2 . . . bnp


=

∑n
i=1 a1ibi1

∑n
i=1 a1ibi2 . . .

∑n
i=1 a1ibip∑n

i=1 a2ibi1
∑n

i=1 a2ibi2 . . .
∑n

i=1 a2ibip
... ... ... ...∑n

i=1 amibi1
∑n

i=1 amibi2 . . .
∑n

i=1 amibip


12. We also have the distributive property:

S(T1 + T2) = (ST1) + (ST2).

The matrix representation for this is:

[S][T1 + T2] = [S][T1] + [S][T2].

41



• Some examples of linear transformations:

1. The function T : R2 → R given by

T ((x, y)) = x + y is linear.

2. The function T : R2 → R3 given by

T ((x, y)) = (x + 2y, x− 2y, x− y) is

linear.

3. Given a1, a2, . . . , an ∈ F, and V a finite

dimensional vector space over F with

basis (v1, v2, . . . , vn), the function

T : V → F given by

T (b1v1 + . . . + bnvn) = a1b1 + . . . + anbn

is linear.

In general, for a vector space V , a

linear transformation T : V → F is

called a linear functional. The study

of these transformations is called

functional analysis.
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4. The function D : Fn[x]→ Fn−1[x] given

by

D(anxn + . . . + a1x + a0)

= nanxn−1 + . . . + 2a2x + a1

is linear. This linear transformation is

called the derivative . . .

5. Similarly, we have the derivative

transformation D : F∞[x]→ F∞[x] given

by

D(
∞∑

n=0

anxn) =
∞∑

n=1

n ∗ anxn−1.

6. The shift map S : F∞ → F∞ is given by:

S((a0, a1, . . .)) = (a1, a2, . . .).

7. The difference map ∆ : F∞ → F∞ is

given by:

∆((a0, a1, . . .)) = (a1 − a0, a2 − a1, . . .),

or, abbreviating (a0, a1, . . .) by (an),

∆((an)) = (an+1 − an).
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Exercises: Linear
transformations ←

1. Verify each of the statements marked
(ex) in this section.

2. Verify that each of the 7 examples
actually are linear transformations.

3. Show that the usual calculus derivative
d
dx : C∞(R)→ C∞(R) given by:

d f(x)

dx
= lim

h→0

f(x + h)− f(x)

h

is a linear transformation.

4. Is the usual calculus indefinite integral∫
f(x)dx

a linear transformation? Why or why not?
What about the definite integral?
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Morphisms – mono, epi,
and iso ←

• In algebra, we call a function that

preserves structure a morphism. In our

current context, a linear transformation

preserves the linear structure of a vector

space in the sense that

T (u1 + u2) = T (u1) + T (u2) and

T (au) = aT (u). Thus, linear

transformations are morphisms in the

category of vector spaces.

• We will be particularly interested in

morphisms that have additional

properties. Specifically, we are likely to

look for morphisms T : U → V which have

one or more of the properties:
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1. One-to-one. Such transformations are

also called injective, or

monomorphisms. These

transformations have the property that

if u1 6= u2, then T (u1) 6= T (u2). This

says that different things get sent

different places – that is, no two things

get sent to the same place.

Monomorphisms are nice because the

subspace im(T ) ⊂ V looks just like U .

2. Onto. Such transformations are also

called surjective, or epimorphisms.

These transformations have the

property that for every v ∈ V , there

exists some u ∈ U with T (u) = v. This

says that every element of V is hit by

some element of U . Another way to

say this is that im(T ) = V .

Epimorphisms are nice, because the

algebraic properties of V will be

reflected back in U .
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3. Both one-to-one and onto. Such
transformations are also called
bijective. A bijective function
f : X → Y has an inverse f−1 : Y → X

with the properties that for all x ∈ X

and all y ∈ Y , f−1(f(x)) = x and
f(f−1(y)) = y.

A bijective morphism whose inverse
also preserves algebraic structure is
called an isomorphism. In linear
algebra, we have the nice property that
if a linear transformation is bijective,
then its inverse is also linear, and thus
it is an isomorphism.

4. If there is an isomorphism T : U → V ,
we say that the spaces U and V are
isomorphic. If two spaces are
isomorphic, then they share all relevant
properties. Thus, two isomorphic
vector spaces are indistinguishable as
vector spaces except for a renaming of
the elements.
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• We have the nice fact that a linear

transformation T : U → V is a

monomorphism (is one-to-one) if and only

if ker(T ) = {0}.

Pf.: Suppose T is a monomorphism. We

know that for every linear transformation,

T (0) = 0. Then, since T is a

monomorphism, we know that if

T (u) = 0 = T (0), it must be that u = 0.

Thus ker(T ) = {0}.

On the other hand, suppose that

ker(T ) = {0}. Then, if T (u1) = T (u2), we

will have 0 = T (u1)− T (u2) = T (u1 − u2).

But this means that u1 − u2 ∈ ker(T ) and

hence, since we are assuming that

ker(T ) = {0}, we must have u1 − u2 = 0,

or u1 = u2. By the contrapositive, this

means that if u1 6= u2, then

T (u1) 6= T (u2). Q.E.D.

(I had to do at least one proof,

didn’t I? :-)

48



• An important example of an isomorphism

is the identity transformation IU : U → U

given by IU(u) = u. (ex)

• If T : U → V is a monomorphism, then

there is a linear transformation

S1 : im(T )→ U with

S1(T (u)) = (S1T )(u) = u for all u ∈ U .

This says that S1T = IU . S1 is called a

left (partial) inverse of T . (ex)

• If T : U → V is an epimorphism, then

there is a linear transformation S2 : V → U

with T (S2(v)) = (TS2)(v) = v for all

v ∈ V . This says that TS2 = IV . S2 is

called a right (partial) inverse of T . (ex)
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• If T : U → V is an isomorphism, then since

T is an epimorphism, both S1 and S2 (as

above) exist. Also, im(T ) = V . We

therefore have that for all v ∈ V ,

S1(v) = S1((TS2)(v)) = (S1T )(S2(v)) = S2(v).

Thus S1 = S2. In this case, the

(two-sided) inverse of T exists, and we

have T−1 = S1 = S2.

• If U and V are finite dimensional vector

spaces over F with dim(U) = dim(V ),

then U and V are isomorphic. (ex)

(Big) hint for proof: Let (u1, u2, . . . , un)

and (v1, v2, . . . , vn) be bases for U and V

respectively. Define T : U → V by

T (ui) = vi for 1 ≤ i ≤ n, and extend by

linearity. Make sense of the phrase

“extend by linearity,” and then show that

T is an isomorphism.
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• We also have the nice fact that if
dim(U) = dim(V ) = n, U, V over F, and
T : U → V is linear, then the following are
equivalent: (ex)

1. T is a monomorphism.

2. T is an epimorphism.

3. T is an isomorphism.

This means, for example, that such a T is
onto if and only ker(T ) = 0.

• If T : U → V and S : V →W , then (ex)

1. If both S and T are monomorphisms,
then so is ST .

2. If ST is a monomorphism, then so is T .

3. If both S and T are epimorphisms,
then so is ST .

4. If ST is an epimorphism, then so is S.
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• If T : V → V and S : V → V , and ST = TS,
then (ex)

1. Both S and T are monomorphisms if
and only if ST is a monomorphism.

2. Both S and T are epimorphisms if and
only if ST is an epimorphism.

• Let matrix(F, n, m) be the space of all n

by m matrices with entries from F. We
use ordinary entry by entry matrix
addition, where (A + B)ij = Aij + Bij,
scalar multiplication, where (aA)ij = aAij,
and let (0)ij = 0. Then matrix(F, n, m) is
an n ∗m-dimensional vector space over F.
If dim(U) = m and dim(V ) = n, then we
can define

mat : L(U, V )→ matrix(F, n, m)

by mat(T ) = [T ].

This transformation is an isomorphism.
(ex)
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Exercises: Morphisms –
mono, epi, and iso ←

1. Verify each of the statements marked

(ex) in this section.

2. Show that if a function has an inverse,

then the inverse is unique.

3. Consider the function T : Fn[x]→ Fn+1

given by

T (a0 + a1x + . . . + anxn) = (a0, . . . , an).

Show that this function is an

isomorphism.

4. Consider the function

T : C→ matrix(R,2,2) given by

T (a + bi) =

[
a −b
b a

]
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(a) Show that if we consider C as a real

vector space, this function is a

monomorphism.

(b) Show that this function also respects

complex multiplication, that is,

T ((a + bi)(c + di)) = T (a + bi)T (c + di).

5. More generally, consider the function

T : matrix(C, n, n)→ matrix(R,2n,2n)

given by

T


 a11 + b11i · · · a1n + b1ni

... ...
an1 + bn1i · · · ann + bnni




=


a11 −b11 · · · a1n −b1n
b11 a11 · · · b1n a1n
... ... ... ...

an1 −bn1 · · · ann −bnn

bn1 an1 · · · bnn ann
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(a) Show that if we consider

matrix(C, n, n) as a real vector space,

this function is a monomorphism.

(b) Show that this function also respects

matrix multiplication, that is,

T (AB) = T (A)T (B).

6. What the heck. Let H be the quaternions

(described above). Consider the function

T : matrix(H, n, n)→ matrix(C,2n,2n)

given by

T


 α11 + β11j · · · α1n + β1nj

... ...
αn1 + βn1j · · · αnn + βnnj




=


α11 −β11 · · · α1n −β1n
β11 α11 · · · β1n α1n
... ... ... ...

αn1 −βn1 · · · αnn −βnn

βn1 αn1 · · · βnn αnn
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(a) Show that if we consider

matrix(H, n, n) as a complex vector

space, this function is a

monomorphism.

(b) Show that this function also respects

matrix multiplication, that is,

T (AB) = T (A)T (B).

Thus, if we denote by O(n), U(n), and

Sp(n) the distance preserving linear

operators on Rn, Cn, and Hn respectively

(called the orthogonal, unitary, and

symplectic groups), then we have the

monomorphisms:

· · · → O(n)→ Sp(n)→ U(2n)→ O(4n)

→ Sp(4n)→ U(8n)→ O(16n)→ · · ·
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Linear operators ←

• If T : V → V is a linear transformation, we

call T a linear operator on V . Note that

if S and T are operators on V , then so is

ST . We can abbreviate L(V, V ) as L(V ).

L(V ) has the algebraic structure of a ring

with identity. A ring is similar to a field

(as defined above), except without the

requirements that multiplication be

commutative and that there be

multiplicative inverses for non-zero

elements. The identity element is IV .

L(V ) is a non-commutative ring, since in

general ST 6= TS. This is reflected in the

fact that matrix multiplication is

non-commutative. Only in very special

cases is it true that [S][T ] = [T ][S] (for

example, if both [S] and [T ] are diagonal

matrices, with [S]ij = 0 for i 6= j, and

[T ]ij = 0 for i 6= j).
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• Note that for operators, it makes sense to
talk about T ◦ T , and we can thus define
Tn = T ◦ T ◦ . . . ◦ T (n times). We also
define T0 = I, the identity operator.

• Thus, if we have a polynomial
P (x) = anxn + an−1xn−1 + . . . + a1x + a0
from F[x], we can talk about the
polynomial in T :

P (T ) = anTn + an−1Tn−1 + . . . + a1T + a0.

(The a0 term stands for a0I.) This is an
operator on V which acts on vectors as:

P (T )(v) = anTn(v) + . . . + a1T (v) + a0v.

• In fact, we can generalize this to power
series. If

p(x) =
∞∑

n=0

anxn,

then we can define

p(T ) =
∞∑

n=0

anTn.
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• This means, for example, that we can
define the exponential of an operator:

exp(T ) =
∞∑

n=0

1

n!
Tn.

• We can even define the cosine or sine of
an operator, etc.:

cos(T ) =
∞∑

n=0

(−1)n

(2n)!
T2n,

sin(T ) =
∞∑

n=0

(−1)n

(2n + 1)!
T2n+1.

• We can talk about square roots of an
operator, saying that S is a square root of
T if S2 = T . It is unlikely that S is unique.

• We can also talk about logarithms of an
operator, saying that S is a logarithm of
T if exp(S) = T . Again, it is unlikely that
S is unique.
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• Examples of linear operators:

1. A first important example begins like

this: suppose we have a system of m

linear equations in n variables

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = 21
... ...

am1x1 + am2x2 + . . . + amnxn = bm.

If we let A : Fn → Fm be the linear

transformation with [A]ij = aij, x be

the vector (x1, x2, . . . , xn)t, and b the

vector (b1, b2, . . . , bm)t, then we can

rewrite the equation in the form:

Ax = b.

We then have several possibilities.
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(a) The first case is when m = n. There

are then two possibilities:

i. If A is an isomorphism, then A−1

exists, and we can solve the

equation for x:

x = A−1Ax = A−1b.

ii. If A is not an isomorphism, then in

particular A is not a an

epimorphism, and thus it is possible

that b /∈ im(A). In this case, there

are no solutions to the equation.

On the other hand, if b ∈ im(A)

there is at least one solution x0

with Ax0 = b.

Note, though, that we also know A

is not a monomorphism, and hence

dim(ker(A)) ≥ 1. Then, if

z ∈ ker(A), we have A(x0 + z) =

Ax0 + Az = Ax0 + 0 = Ax0 = b,

and so x0 + z is another solution.
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Furthermore, if y is another

solution with Ay = b, then

A(x0 − y) = Ax0 −Ay = b− b = 0.

This means x0 − y ∈ ker(A), and so

y = x0 + z for some z ∈ ker(A).

Thus, if x0 is a particular solution,

then every solution is of the form

x0 + z for some z ∈ ker(A). The

space of solutions is then a

translation of the kernel of A, of

the form x0 + ker(A). We then only

need to find one particular solution.

In this case, we have broken the

problem down into two parts: first,

we solve Ax = 0 (called the

homogeneous equation), then we

find a single solution Ax0 = b. For

F = R or C, there will be infinitely

many solutions.
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(b) The second case is when m < n. In

this case, A cannot be a

monomorphism, and things are then

similar to the second part of the

previous case. If A is an

epimorphism, there is sure to be at

least one solution. Again, we solve

the homogeneous case, and then find

one particular solution. If A is not an

epimorphism, there may not be any

solutions. Otherwise, as above, in

general we will have infinitely many

solutions.

(c) If m > n, then A cannot be an

epimorphism, and hence there may

not be any solutions. If A is a

monomorphism, if there is a solution,

there will be just one. If A is not a

monomorphism, if there is one

solution, there will be infinitely many,

as above.
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(d) In all three cases, we can start by

trying to find the inverse (or left

partial inverse) of A. If A is a

monomorphism, we can expect to be

successful, and to be able to find the

unique solution if it exists. If A is not

a monomorphism, we solve the

homogeneous equation, and then

look for a single particular solution.

(e) Question: How can we tell if A is a

monomorphism? How can we find

A−1, or at least S1, the left partial

inverse of A?
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2. A second important example is the
derivative operator

D : C∞(R)→ C∞(R).

Note that this is a linear operator,
since D(f + g) = D(f) + D(g), and
D(af) = aD(f).

Note that ker(D) = span({1}), the
one-dimensional space consisting of all
constant functions. If we collapse
ker(D) down to nothing (in technical
terms, form the quotient space . . . )
then we can think of D as an
isomorphism (on the quotient space).
D has an inverse,∫

: C∞(R)→ C∞(R).

We then have (a variant of) the
fundamental theorem of calculus:

D
∫

(f) =
∫

D(f) = f

(on the reduced space – that is, up to
a constant).
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3. We can then consider the general

linear ordinary differential operators

with constant coefficients. These are

operators in R[D], that is operators of

the form:

P (D) = anD
n + . . . + a1D + a0.

These operators act on a function

f ∈ C∞(R) as

P (D)(f) = anD
n(f)+. . .+a1D(f)+a0f.

We then have the general nth order

linear ordinary differential equation

with constant coefficients:

P (D)(f) = g.

We can work on solving these

equations with an approach similar to

the method for systems of linear

equations.
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We first note that if the function f0 is

a solution to this equation, and

z = z(x) ∈ ker(P (D)), then f0 + z is

also a solution, and if f1 is another

solution, then P (D)(f0 − f1) =

P (D)(f0)− P (D)(f1) = g − g = 0.

Thus, all solutions are of the form

f0 + z where f0 is some particular

solution, and z ∈ ker(P (D)).

We thus separate the problem into two

parts. First we solve the associated

homogeneous equation:

P (D)(f) = 0

to find ker(P (D)), and then we look

for a single particular solution to the

original equation.

In general, we have that

dim(ker(P (D))) = n, the degree of P .

This is not an entirely obvious fact,

but it is not counterintuitive . . .
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Hence what we need to do is find n

functions which form a basis for
ker(P (D)). What we need, then, are n

linearly independent functions each of
which is a solution to the
homogeneous equation.

In theory (:-) this is not too hard.

We note first that for the first-order
case, we have the solution:

(D− r)(erx) = D(erx)− rerx

= rerx − rerx

= 0,

and, in the kth order extension of this,

(D− r)k(xk−1erx) = 0.

We also have that the set of functions
A = {xjerix | 0 ≤ j ≤ k,1 ≤ i ≤ m}
is linearly independent. From this we
see how to solve equations of the form:∏

i

(D− ri)
ki(f) = 0.
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Now, consider the operator

D2 − 2sD + s2 + t2

for s, t ∈ R.

We have that

(D2−2sD+s2+t2)k(xk−1esx cos(tx)) = 0,

(D2−2sD+s2+t2)k(xk−1esx sin(tx)) = 0.

We can think of this as α = s + ti, and

that we are working with

D2 − 2sD + s2 + t2 = (D− α)(D− ᾱ).

We have that the set of functions

B = {xjeskx cos(tkx), xmesnx sin(tnx)}

is also linearly independent. From this

we see how to solve equations of the

form:∏
i

(D2 − 2siD + s2i + t2i )
ki(f) = 0.
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We can now put together all the pieces

to solve the homogeneous equation

P (D) = 0. We use the fact that any

polynomial over R can be completely

factored as

P (D) =
∏
i

(D−ri)
ki

∏
j

(D−αj)
kj(D−ᾱj)

kj

with ri ∈ R and αj ∈ C.

To solve the inhomogeneous equation,

we need only to find one particular

solution of P (D)(f) = g.

This is just the bare beginnings of

techniques for solving differential

equations, but it gives the flavor of

some relatively powerful methods, and

the role that linear algebra plays. I

haven’t even mentioned the issues of

initial values/boundary conditions. For

much more on these topics, look at a

book such as Elementary Differential

Equations with Linear Algebra, by

Finney and Ostberg.
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4. These approaches generalize to linear

ordinary differential operators with

non-constant coefficients:

an(x)D
n + an−1(x)D

n−1 + · · ·+ a0(x),

to systems of linear ordinary differential

operators, and on to linear partial

differential operators and systems of

linear partial differential operators. But

I think for now someone else will have

to write that up . . . :-)

5. We can develop a similar approach to

solving linear discrete difference

equations. For example, the difference

equation (an+2 − an+1 − an) = (0) has

as a solution the Fibonnacci sequence

(an) = (1,1,2,3,5,8, . . .). We could

work with the discrete version ∆ of the

differential operator D, where ∆f(x) =

(f(x + 1)− f(x))/1 = f(x + 1)− f(x).

In the discrete case, we can’t let h go

to zero.
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We would then have
∆((an)) = (an+1 − an). Our example
difference equation would be

(∆2 + ∆− 1)((an)) = (0).

Often, however, it is more convenient
to work with the discrete increment
operator E, with E(f(x)) = f(x+1), or
E((an)) = (an+1). Both ∆ and E are
linear operators. Our example equation
is then E2((an)) = E((an)) + (an), or

(E2 − E− 1)((an)) = (0).

In a general form, we have a
polynomial P (x) for an equation of the
form P (E)((an)) = (0). We can then
find a general solution by using the
facts that

(E− α)k((njαn)) = (0)

for 0 ≤ j < k, and

{(njαn) | 0 ≤ j < k}

is a linearly independent set, etc.
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6. Of course, all of these are the easy

cases. The hard ones are the nonlinear

equations . . .

7. At times, this reminds me of a

comment made by my Ph.D. thesis

advisor, after I had finished the proof

of my main result for all odd primes.

He said there were three ways to think

about it:

(a) I had handled infinitely many cases,

and omitted only one, the even prime

2.

(b) I had done half the cases. I had

handled all the odd primes, but none

of the even ones.

(c) I had dealt with all the uninteresting

cases, but not the single interesting

case :-)
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Exercises: Linear
operators ←

1. Find a linear operator S such that

S2 =

[
−1 0
0 −1

]

2. If S is the operator

S =

[
0 −π

4
π
4 0

]
,

what is exp(S)?

3. Solve the system of equations:

3x1 + x2 − 2x3 = 3
x1 − 2x2 − x3 = 1
2x1 − 4x2 − x3 = 3
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4. Solve the differential equation:

d5f

dx5
− 7

d4f

dx4
+ 23

d3f

dx3
− 45

d2f

dx2
+ 48

df

dx
− 20f

= 26cos(x)− 18 sin(x)

Hint:

x5 − 7x4 + 23x3 − 45x2 + 48x− 20

= (x− 1)(x− 2)2(x2 − 2x + 5)

5. Find the general solution to the difference

equation

(E2 − E− 1)((an)) = (0)

6. Find the general solution to the difference

equation

(E4 + 2E2 + 1)((an)) = (0)
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7. Verify that

(a) D, the derivative, is a linear operator.

(b) (D− r)k(xk−1erx) = 0

(D2 − 2sD + s2 + t2)k(xk−1esx cos(tx)) = 0

(D2 − 2sD + s2 + t2)k(xk−1esx sin(tx)) = 0

(c) E, the discrete increment, is a linear

operator.

(d) (E− α)k((njαn)) = (0) for 0 ≤ j < k.

8. What happens in nonlinear cases?

Sometimes they are manageable,

sometimes not.

(a) Solve the differential equation

Df = b ∗ f ∗ (1− f).
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(b) What can be said about the difference

equation

E((an)) = (b ∗ an ∗ (1− an))?

Note: this is often called the logistics

equation.
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Normed linear spaces ←

• A norm on a real or complex vector space

V is a function

|| · || : V → R

with the properties, for v, v1, v2 ∈ V ,

1. ||v|| ≥ 0

2. ||v|| = 0 if and only if u = ~0

3. ||av|| = |a| ||v||

4. ||v1 + v2|| ≤ ||v1||+ ||v2||.

A space with such an associated function

is called a normed linear space.
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• Using the norm, we can define a

topology on the space, and can then talk

about continuity of functions or

operators, limits of sequences, etc.

I won’t go into this much here beyond a

few examples, but good places to look are

books on Hilbert Spaces and/or

functional analysis. There are a few

books indicated in the references.

• Using the norm, we can define a metric

on V by: d(v1, v2) = ||v1 − v2||. Metrics

have the properties:

1. d(v1, v2) ≥ 0

2. d(v1, v2) = 0 iff v1 = v2

3. d(v1, v2) = d(v2, v1)

4. d(v1, v2) ≤ d(v1, v3) + d(v3, v2)

(the triangle inequality).
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• Some examples:

1. On Rn or Cn, we have the norm

||(a1, a2, . . . , an)||2 = (|a1|2+. . .+|an|2)1/2.

This is usually called the Euclidean

norm.

We can also think of this in terms of

the inner product given by

〈(a1, a2, . . . , an), (b1, b2, . . . , bn)〉
= a1b̄1 + a2b̄2 + · · ·+ anb̄n.

We then have ||v||2 = 〈v, v〉1/2.

2. We can generalize, for p > 0, to

||(a1, a2, . . . , an)||p = (|a1|p+. . .+|an|p)1/p,

and

||(a1, a2, . . . , an)||∞ = max(|a1|, . . . , |an|).

These are called the p-norms and the

∞-norm (or max-norm).
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A fun little exercise is to draw the

circle of radius 1 in R2 for each of

these norms:

circlep(1) = {(x, y) ∈ R2 | ||(x, y)||p = 1}

for p > 0, or for p =∞.

One of these constitutes a “proof”

that a square is a circle :-)

3. We can generalize this to R∞ or C∞:

||(a1, a2, . . .)||p =

 ∞∑
n=1

|an|p
1/p

,

||(a1, a2, . . .)||∞ = sup
n

(|an|).

For this to make sense, we will have to

limit ourselves to the subspaces where

the sum converges:

lp = {(a1, a2, . . .) |

 ∞∑
n=1

|an|p
1/p

<∞},

l∞ = {(a1, a2, . . .) | sup
n

(|an|) <∞}.

81



4. On C0(R) or C0(C), we can define

||f ||p =
(∫
|f |p

)1/p

||f ||∞ = sup
x

(|f(x)|).

Again, we limit ourselves to the
subspaces where these are <∞, and
call the corresponding spaces Lp or L∞.

5. We can think each of these Euclidean
norms, || · ||2, as coming from an
inner product:

||(a1, a2, . . .)||2 = 〈(a1, . . .), (a1, . . .)〉1/2

=

 ∞∑
n=1

anān

1/2

||f ||2 = 〈f, f〉1/2

=
(∫

ff̄

)1/2
.

When a complex Euclidean normed
linear space is complete (that is, every
Cauchy sequence converges), it is
called a Hilbert space.
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Exercises: Normed linear
spaces ←

1. Verify that each of the examples actually

are norms.

2. In R2, draw the unit circles

(a) circle1(1) = {(x, y) ∈ R2 | ||(x, y)||1 = 1}

(b) circle3/2(1) = {(x, y) ∈ R2 |
||(x, y)||3/2 = 1}

(c) circle2(1) = {(x, y) ∈ R2 | ||(x, y)||2 = 1}

(d) circle3(1) = {(x, y) ∈ R2 | ||(x, y)||3 = 1}

(e) circle∞(1) = {(x, y) ∈ R2 |
||(x, y)||∞ = 1}
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3. Suppose that V is a real or complex
vector space. An inner product on V is a
conjugate-bilinear function on V :

< ·, · >: V xV → F
where, for all v1, v2, v ∈ V , and α ∈ F,

< v, v > ≥ 0

< v, v > = 0 iff v = 0

< v1 + v2, v > = < v1, v > + < v2, v >

< v1, v2 > = < v2, v1 >

< αv1, v2 > = α < v1, v2 > .

Show that for an inner product,

< v, v1 + v2 > = < v, v1 > + < v, v2 >

< v1, αv2 > = α < v1, v2 > .

Show that for a finite dimensional real or
complex vector space V with basis
(v1, v2, . . . , vn), the function f : V xV → F
given by

f

∑
i

aivi,
∑
i

bivi

 =
∑
i

aibi

is an inner product.
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4. Recall that a linear functional on a vector

space V is a linear map f : V → F. For a

finite dimensional real or complex inner

product space V , define the dual space of

V to be the space

V ∗ = {f : V → F | f is a linear functional}

Show that V ∗ is a vector space over F,

and that V and V ∗ are isomorphic to each

other.

Hint: Show that every f ∈ V ∗ corresponds

with a function of the form

< vf , · >: V → F

for some vf ∈ V .

85



Eigenvectors and
eigenvalues ←

• Suppose T is a linear operator on V .

Then λ ∈ F is called an eigenvalue or

characteristic value of T if there exists

v 6= 0 in V with T (v) = λv. In this case

we call v an eigenvector or

characteristic vector of T .

• An equivalent definition is that λ is an

eigenvalue of T if and only if (T −λI)v = 0

for some v 6= 0. This follows from the

fact that 0 = (T − λI)v = T (v)− λv if and

only if T (v) = λv. Note that this also

means that ker(T − λI) 6= {0}. Thus, λ is

an eigenvalue if and only if (T − λI) is not

a monomorphism. In the finite

dimensional case, this is equivalent to

(T − λI) not being invertible.
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• Now suppose that λ1, . . . , λk are distinct
eigenvalues of T (i.e., λi 6= λj for i 6= j),
with associated eigenvectors v1, . . . , vk.
Then {v1, . . . , vk} is a linearly independent
set.

• This means in particular that if T ∈ L(V )
with dim(V ) = n, and T has n distinct
eigenvalues λi with associated
eigenvectors vi, then the set
S = (v1, . . . , vn) is a basis for V .
Furthermore, the matrix representation of
T with respect to the basis S is

[T ] =


λ1 0 . . . 0
0 λ2 . . . 0
... ... ... ...
0 0 . . . λn


or [T ]ii = λi, [T ]ij = 0 for i 6= j. This is
also sometimes written as
[T ] = diag(λ1, . . . , λn).

Eigenvalues and eigenvectors can thus
give us a very simple representation for T .
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• Not all linear operators have eigenvalues
(or eigenvectors). For example, the linear
operator Tθ : R2 → R2 given by

[Tθ] =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
is a (counter-clockwise) rotation around
the origin through the angle θ. If θ is not
an integral multiple of π, then Tθ has no
eigenvalues.

• More generally, consider a non-zero linear
operator T : R2 → R2. If 0 6= u ∈ R2, then
there must be a linear combination of
{u, T (u), T2(u)} with

0 = T2(u) + aT (u) + b(u) = Pu(T )(u).

If Pu(T ) factors into linear factors
Pu(T ) = (T − λ1I)(T − λ2I) with
λ1, λ2 ∈ R, then λ1 and λ2 are eigenvalues
of T . On the other hand, if a2 − 4b < 0,
then T has no eigenvalues (it is a general
rotation in R2).
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• On the other hand, every non-zero linear
operator T : Cn → Cn has an eigenvalue.
We can see this from the fact that, for
any u 6= 0 in Cn, the set of vectors
{u, T (u), T2(u), . . . , Tn(u)} must be a
linearly dependent set, and hence there
are a0, a1, . . . , an not all zero with

0 =
n∑

i=0

aiT
i(u) = Pu(T )(u).

We know that we can factor the
polynomial Pu(T ) over C into a product of
linear factors

Pu(T ) =
∏
j

(T − zjI)
kj(T ).

This linear operator is not a
monomorphism (since u ∈ ker(Pu(T ))). It
is a product of commutative factors, and
hence at least one of the factors (T − zjI)
is not a monomorphism. This says then
that at least one of the zj is an eigenvalue
of T . We can proceed to find n

eigenvalues and eigenvectors.
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• For for every non-zero linear operator
T : Cn → Cn, there is a polynomial
PT (T ) =

∑
i aiT

i of degree n, called the
characteristic polynomial of T , with:

1. PT (T ) = 0. That is, PT (T )(u) = 0 for
all u ∈ Cn.

2. The linear factors of PT (T ) are each of
the form (T − λjI) for some eigenvalue
λj. Also, an = 1. That is,

PT (T ) =
∏
j

(T − λjI)
kj(T ).

3. For each eigenvalue λj, there is an
eigenvector uj. If kj > 1, there is a
linearly independent set of kj

eigenvectors for λj. The set of n

eigenvectors {ui} is a linearly
independent set, and thus is a basis for
Cn. As above, the matrix
representation of T with respect to this
basis is [T ] = diag(λ1, . . . , λn) (with
repetitions as necessary).
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• A non-zero linear operator T : Rn → Rn

also has a characteristic polynomial of

degree n. The big difference for the real

case is that the polynomial will factor into

a combination of linear and quadratic

factors. There is then a basis consisting

partially of eigenvectors and partially of

pairs of basis vectors for two-dimensional

subspaces on which T is a rotation. The

matrix of T with respect to this basis

then looks like

[T ] = diag(λ1, . . . , λk, Ak+1, . . . , A(n−k)/2)

where each Ai is a two-by-two matrix

without eigenvalues.

• The set of eigenvalues of an operator is

sometimes called the spectrum of the

operator. In cases like Cn where the

eigenvectors form a basis for the space,

using such as basis is sometimes known as

the spectral decomposition of the

operator.
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• Just briefly, let’s glance at differential

operators. D : C∞(R)→ C∞(R) has

uncountably many eigenvalues. Each real

number a ∈ R is an eigenvalue since

D(eax) = aeax.

The corresponding eigenvectors are of

course fa(x) = eax.

The differential operator D2 also has

uncountably many eigenvalues and

eigenvectors since for a > 0,

D2(cos(
√

ax)) = −a cos(
√

ax),

D2(sin(
√

ax)) = −a sin(
√

ax), and

D2(e
√

ax) = ae
√

ax.
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• In this context, here’s an example which

puts many of these pieces together. In

quantum mechanics, a typical expression

of Schrödinger’s equation looks like[
−

~2

2me
52 +V (x, y, z)− i~ ∂

∂t

]
Ψ = 0.

This example is for an electron (with

mass me) in a potential field V (x, y, z).

The general solution of this operator

equation is

Ψ(x, y, z, t) =
∞∑

n=0

cnΨn(x, y, z) exp
(−iEnt

~

)
where Ψn(x, y, z) is an eigenfunction

solution of the associated time

independent Schrödinger equation, with

En the corresponding eigenvalue. The

inner product, giving a time dependent

probability, looks like

P (t) =
∫

ΨΨ̄dv.
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Exercises: Eigenvectors
and eigenvalues ←

1. Show that if v is an eigenvector of T

corresponding with the eigenvalue λ, and
α ∈ F (α 6= 0), then αv is also an
eigenvector of T corresponding with λ. In
particular, eigenvectors are not unique.

2. Define T ∈ L(F2) by T ((x, y)) = (y, x).
Find all the eigenvalues and eigenvectors
of T .

3. Define T ∈ L(F3) by
T ((x, y, z)) = (−y,0,2z). Find all the
eigenvalues and eigenvectors of T .

4. Define T ∈ L(F∞) by
T ((a1, a2, . . .)) = (a2, a3, . . .) (i.e., T is the
left shift operator). Find all the
eigenvalues and eigenvectors of T .
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5. Suppose T ∈ L(V ) is invertible. Show that

λ 6= 0 is an eigenvalue of T if and only if

λ−1 is an eigenvalue of T−1.

6. Suppose S, T ∈ L(V ). Show that ST and

TS have the same eigenvalues.

7. Give an example of an operator whose

matrix has all zeros on the diagonal with

respect to some basis, but which is

invertible. Give an example of an operator

whose matrix has all diagonal elements

non-zero with respect to some basis, but

which is singular (i.e., has no inverse).

8. Show that if S, T ∈ L(V ), S is invertible,

and P (x) ∈ F[x], then

P (S−1TS) = S−1P (T )S.
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9. Suppose that V is a finite dimensional

normed complex vector space, and T is an

isometry of V (i.e., ||T (v)|| = ||v|| for all

v ∈ V ). Show that every eigenvalue λ of T

has |λ| = 1. Hint: show that there is a

basis for V consisting of eigenvectors ei,

with ||ei|| = 1 for 1 ≤ i ≤ n.

10. Let V be a complex vector space, and

T ∈ L(V ). Let P (x) ∈ C[x]. Show that

α ∈ C is an eigenvalue of P (T ) if and only

if α = P (λ) for some eigenvalue λ of T .

11. Is the preceding true for real vector

spaces? Why not? (Note: this is another

example of why C is so much nicer a

place to work than R . . . )

Is the preceding true if we replace C[x]

with C∞[x], power series? If so, show it.

If not, give a counterexample.
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Change of basis ←

• Recall that the matrix associated with a
linear transformation depends on the
particular bases we use. In the case of a
linear operator T : V → V , it is typical to
use the same base for V as domain and as
codomain. However, as we have seen, a
basis consisting of eigenvectors is
particularly convenient, and hence it is
useful to know how to change bases.

If V is finite dimensional, with two bases
S1 = (u1, . . . , un) and S2 = (v1, . . . , vn), we
can consider the matrices of T with
respect to the mixed bases. We can
indicate this by the various symbols
[T ]S1, [T ]S2, [T ]S1S2, and [T ]S2S1, where,
for example

T (ui) =
∑
j

[T ]S1
ji uj, and

T (ui) =
∑
j

[T ]S1S2
ji vj.
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• We can look in particular at the matrix
representations for the identity operator
I. For ease of notation, let [B] = [I]S1S2,
the matrix representation for I using S1
for the domain and S2 for the codomain.
In particular, we then have

ui =
∑
j

[B]jivj = B
j
i vj.

We also have that the matrix inverse
[B]−1 = [I]S2S1 which takes us in the
opposite direction. Putting the pieces
together, we then have

[B][T ]S1 = [T ]S2[B].

That is, doing the operator T in the basis
S1 and then converting to the basis S2 is
the same as converting bases first, and
then doing T in the second base.

Another way to say this is:

[T ]S1 = [B]−1[T ]S2[B]

or

[T ]S2 = [B][T ]S1[B]−1.
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Exercises: Change of basis
←

1. Show that if A and B are operators on a

finite dimensional vector space with

AB = I, the identity operator, then

BA = I, and so B = A−1.

2. Suppose that T is an operator that has

the same matrix with respect to every

basis. Show that T must be some

multiple of the identity operator I.
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Trace and determinant←

• Let V be a finite dimensional vector space

over R or C, and T : V → V an operator

on V . Let PT (T ) =
∑n

i=0 aiT
i be the

characteristic polynomial of T . We can

then define the trace of T by

trace(T ) = an−1, the coefficient of Tn−1.

We can also define the trace of an nxn

real or complex matrix A by

tracem(A) =
∑n

i=1 Aii, the sum of the

diagonal elements of A.

These definitions are consistent, in the

sense that trace(T ) = tracem([T ]), where

[T ] is the matrix of T with respect to

some basis for V . An exercise will be to

show that it doesn’t matter what basis we

use (they all come out the same). Since

these definitions are consistent, we will

ordinarily write them both the same way,

as trace().
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• For S, T : V → V , and a, b ∈ F, the trace

has the nice properties:

1. trace(aS+bT ) = a trace(S)+b trace(T ).

This says that the trace is a linear

functional on L(V ).

2. In the complex case, we have

trace(T ) =
∑
i

λi

where the λi are the eigenvalues of T .

3. trace(ST ) = trace(TS).

• From these we can derive nice facts like:

If we define the commutator of S and T

by [S, T ] = ST − TS, then we always have

[S, T ] 6= I, the identity operator.
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• We can define the determinant of an

operator T by det(T ) = (−1)na0, where

a0 is the constant term in the

characteristic polynomial.

• The determinant has the nice properties:

1. In the complex case, we have

det(T ) =
∏
i

λi

where the λi are the eigenvalues of T .

2. det(T ) 6= 0 iff ker(T ) = {0} iff T is

invertible.

3. det(ST ) = det(S) det(T ) = det(TS).

4. PT (z) = det(zI − T ). That is, the

characteristic polynomial is the

determinant of the generalized

operator (zI − T ), where we think of z

as a complex variable.
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5. We can define the determinant of a

square matrix M = [aij] by

detm(M) =
∑

p∈perm(n)

sign(p)
∏
i

ap(i)i

where perm(n) is the set of all

permutations of the numbers

(1,2, . . . , n), sign(p) is the sign of the

permutation, and p(i) is the ith

number in the permutation p.

We then have:

detm([T ]) = det(T ).

As for the trace, since the two

definitions are consistent, we will

typically denote both determinants by

the same symbol det().

Showing that these two definitions are

consistent is a fair amount of work

(just looking at the formula for detm()

should give you some idea). You can

look it up if you are interested.
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6. There is another definition of

determinant. Suppose V is a real or

complex n-dimensional vector space.

Then there is an alternating

multi-linear functional

detv : V n → F

with the properties, for all

v1, v2, . . . , vn, vi1, vi2 ∈ V and a, b ∈ F:

(a) detv(v1, . . . , vi, . . . , vj, . . . , vn) =

−detv(v1, . . . , vj, . . . , vi, . . . , vn)

(alternating)

(b) detv(v1, . . . , avi1 + bvi2, . . . , vn) =

adetv(v1, . . . , vi1, . . . , vn) +

bdetv(v1, . . . , vi2, . . . , vn) (multi-linear)

(c) detv(e1, . . . , en) = 1 for a particular

basis {e1, . . . , en} for V . (uniqueness)

We then have

detm(A) = detv(A1, . . . , An), where Ak
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is the kth column of the matrix A,

considered as a vector.

We have that det(T ) = detm([T ]) =

detv([T ]1, . . . , [T ]n). The fact that

there are three different versions of the

same thing suggests that many people

have worked on this topic, and that

this topic occurs in a variety of

contexts . . .

7. Recall the discussion of norms on

vector spaces. The Euclidean norms

(||v||2), which can be thought of as

coming from an inner product

(< v1, v2 >), have a nice relationship

with the determinant:

||T (v)||2 = ||v||2 for all v ∈ U

iff |det(T )| = 1.

8. An operator which preserves the

Euclidean norm (||T (v)||2 = ||v||2) is
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called an isometry. When the scalar
field is R, these are called orthogonal
operators. In the case of C, they are
called unitary operators. In the case of
the quaternions, they are called
symplectic operators.

9. The isometries on a normed linear
space have the properties:

(a) If T is an isometry, then det(T ) 6= 0,
and hence T has an inverse, T−1,
which is also an isometry. Of course,
I, the identity operator, is an
isometry.

(b) If T1 and T2 are isometries, then
T1T2 is also an isometry.

(c) This means that the set of isometries
forms a group. In the three cases
described above, these are called the
orthogonal group, the unitary
group, and the symplectic group.
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10. Another way to characterize the

isometries (in the finite dimensional

case, but also with appropriate

generalizations in infinite dimensional

cases) is that an operator is an

isometry if 1.) its inverse exists, and

2.) the matrix of its inverse is given by

the conjugate transpose. That is, if

[T−1]ij = [T ]ji.

11. The determinant also plays an

important role in change of variables

formulas (in Rn, for example).

Suppose Ω ⊂ Rn and σ : Ω→ Rn. We

will think of σ as a (local) coordinate

system on Ω, or as a change of

variables.

The derivative of σ at x is the unique

operator T (if it exists) satisfying:

lim
y→0

||σ(x + y)− σ(x)− Ty||
||y||

= 0.
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If this operator T exists, σ is called

differentiable, and T is denoted by

σ′(x). Note that σ′(x) ∈ L(Rn). We

can write σ(x) = (σ1(x), . . . , σn(x)),

and we can denote the partial

derivative of σj with respect to the kth

coordinate by Dkσj(x).

If σ is differentiable at x, then the

matrix of σ′(x) is given by:

[σ′(x)] =

 D1σ1(x) . . . Dnσ1(x)
... ...

D1σn(x) . . . Dnσn(x)


If we assume that Ω is a reasonable set

(e.g., open, or measurable) and

f : Ω→ R is also reasonable (e.g.,

continuous, or measurable), then we

have the change of variables formula:∫
σ(Ω)

f(y)dy =
∫
Ω

f(σ(x))|det(σ′(x))|dx.
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Exercises: Trace and
determinant ←

1. Given two real or complex nxn matrices A

and B, show that

tracem(AB) = tracem(BA).

2. Given an operator T on a real or complex

finite dimensional vector space V , show

that tracem([T ]) and detm([T ]) are

independent of the basis used for the

matrix representation [T ]. Hint: use the

change of basis formula

[T ]S1 = [B]−1[T ]S2[B], the previous

problem, and detm(AB) = detm(BA).

3. Show that trace is linear, that is,

trace(aS + bT ) = atrace(S) + btrace(T ).

4. Show that trace(T ) =
∑n

i=1[T ]ii.
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5. For two operators S and T , show that
[S, T ] 6= I. Recall that [S, T ] = ST − TS.

6. Show by example that in general,
trace(ST ) 6= trace(S)trace(T ). In
particular, find an operator T on a real
vector space V with trace(T2) < 0.

7. Suppose A is an nxn real matrix,
S ∈ L(Rn) has matrix representation A
with respect to some basis, and T ∈ L(Cn)
has matrix representation A with respect
to some basis. Show that
trace(S) = trace(T ) and det(S) = det(T ).

8. Show that if T is an isometry on a finite
dimensional normed vector space, then
|det(T )| = 1.

9. Show that if T is an operator on a
complex vector space of dimension n, and
α ∈ C, then det(αT ) = αn det(T ).
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