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A Simple Example ←

Consider the following gambling game. You are going to bet an
amount of money m. . .

1. You bet your money (say m dollars).

2. A fair coin is fairly flipped
(i.e., Pr(heads) = Pr(tails) = 0.5)

3. If the coin comes up heads, you are paid back m ∗ 1.50;
if the coin comes up tails, you are paid back m ∗ 0.60.

Should you be willing to play this game?
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Let’s calculate the expected value of the game:

< game > = Pr(heads) ∗m ∗ 1.50+ Pr(tails) ∗m ∗ 0.60
= 0.5 ∗m ∗ 1.50+ 0.5 ∗m ∗ 0.60
= m ∗ 0.75+m ∗ 0.30
= m ∗ 1.05

Thus, by playing the game, you expect to increase the money
you wagered by 5%. It seems that you should be happy to play
this game (for any amount of money m).

But, let’s ask a slightly different question: What is the
probability that if you play the game once, you will walk away
from the game a winner?

Obviously, if you play the game exactly once, you have a 50/50
chance of walking away a winner (that is, if the coin comes up
heads . . . ).
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On the other hand, in order to actually realize the expected
value, aren’t you likely to have to play the game many times?

Okay, suppose you play the game twice, with an initial bet of
$1.00, and you "let it ride" (in other words, whatever happens
in the first coin toss, you bet the entire amount on the next
coin flip). The value of the game is: v(HH) = $2.25,
v(HT ) = $0.90, v(TH) = $0.90, v(TT ) = $0.36. So you only
have one chance in four of walking away a winner (that is, if
the coin comes up heads twice in a row . . . ).

Let’s explore that some. We’ll take this in a particular
direction, generalizing into an iterated version. We are going to
play the game n times.
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But, we’re going to do it in a specific way, so that time
(history) matters (we’ll come back to this issue later). We’ll
set things up so that the outcome of later parts of the iteration
depend on the results of earlier parts.

The new game follows . . .
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1. Let v(0) = $1.

2. Let j = 0.

3. Now, repeat n times:

(a) A fair coin is fairly flipped (Pr(heads) = Pr(tails) = 0.5)

(b) If the coin comes up heads, v(j +1) = 1.5 ∗ v(j).

(c) if the coin comes up tails, v(j +1) = 0.6 ∗ v(j).

(d) Set j = j +1.

4. You walk away with v(n) dollars.
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Is this a good game to play?

Let’s look at this several different ways. First, let’s see if we
can calculate the expected value of the game. Suppose that we
play the game for some value of n. There are 2n possible
results of the game, each with probability

(
1
2

)n
. The expected

value is then:

〈game(n)〉 =
(
1

2

)n
∗

n∑
j=0

(n
j

)
(0.6)j(1.5)n−j

=
(
1

2

)n
∗ (0.6+ 1.5)n

=
(
1

2

)n
∗ (2.1)n

=
(
2.1

2

)n
= (1.05)n

(as we expected :-)
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So, for some specific examples:

〈game(10)〉 = 1.63

〈game(20)〉 = 2.65

〈game(50)〉 = 11.47

〈game(100)〉 = 131.5

〈game(1000)〉 = 1.55 ∗ 1021

That means that if I offer you the chance to play game(100),
you should be willing to wager $130 (the expected value of the
game is greater than your wager) . . .

But, let’s ask a slightly different question. What is the most
likely amount you will walk away with if you play game(n)?

The probability distribution we are working with here is the
binomial distribution with p = 1

2.
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The value of game(n) if the coin comes up tails j times (and
heads the other n− j times) is

V (game(n), j) = (0.6)j ∗ (1.5)n−j.

For even n, the mode of the distribution happens at j = n
2.

Hence, the most likely amount you will walk away with will be

VML(game(n)) = (0.6)n/2 ∗ (1.5)n/2 = (0.6 ∗ 1.5)n/2 = (0.9)n/2.

That says:

VML(game(10)) = 0.35

VML(game(20)) = 0.12

VML(game(50)) = 0.005

VML(game(100)) = 0.00003

VML(game(1000)) = 1.75 ∗ 10−46
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Hmmm . . . The expected value is going up exponentially, but
your most likely return is declining exponentially, and, in fact,
faster than the expected value is increasing.

Are you still willing to play the game?

Let’s ask another question. Suppose I offer to let you play the
game for $1.00. What is the probability that you will walk away
from the game having broken even or better?

First, we can look at the number of tails you can have and still
break even. This will happen when

1 = (0.6)j ∗ (1.5)n−j

or (taking logs)

j ∗ log(0.6) + (n− j) ∗ log(1.5) = 0
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and so

j ∗ (log(1.5)− log(0.6)) = n ∗ log(1.5)

and thus

j = n ∗
log(1.5)

log(1.5)− log(0.6)

This works out to j ≈ 0.4425 ∗ n.

You will thus break even or better if j ≤ 0.4425 ∗ n (remember,
j is the number of tails – you can’t afford to have too many of
them – they’re bad . . . ). The probability of this happening will
be

prob(j ≤ 0.4425 ∗ n) =
(
1

2

)n
∗
0.4425∗n∑
i=0

(n
i

)
So, how can we calculate that?
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One estimate that we can use, coming from Hoeffding’s
inequality, is

prob(j ≤ k) ≤ exp

(
−2 ∗

(n2 − k)
2

n

)
Putting in k = 0.4425 ∗ n, we have, for example, when
n = 1000:

prob(j ≤ 443) ≤ exp

(
−2 ∗

(500− 442)2

1000

)

= exp

(
−2 ∗

582

1000

)

= exp
(
−2 ∗

3364

1000

)
= exp (−2 ∗ 3.364)
= exp (−6.728)
≈ 0.0012
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Just for fun, here is another estimation process derived from
Stirling’s approximation for the factorial for

(
n
i

)
= n!

i!(n−i)!.

As noted, we have

prob(j ≤ λ ∗ n) =
(
1

2

)n
∗
λ∗n∑
i=0

(n
i

)
We can make an estimate of this as follows, for λ < 1

2:(
1

2

)n
∗
λ∗n∑
i=0

(n
i

)
≤ 2−n ∗ 2nH2(λ) = 2n(H2(λ)−1)

where H2(λ) = λ ∗ log2(1λ) + (1− λ) ∗ log2( 1
1−λ).

Using λ = 0.4425, we have

H2(0.4425)− 1 = 0.99044− 1 = −0.00956
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This gives us the estimate (essentially the same as above):

prob(j ≤ 0.4425 ∗ 1000) ≤ 2−9.56 = 0.00132.

This means that you only have about 1 chance in 1000 of
walking away a winner. Now do you want to play the game?

To get a sense of what happens, let’s look at examples of the
results of playing the "1000 steps" game. Following are some
examples. In the first example, one player plays the "1000
steps" game. Then we can see an example where we look at
the mean results of 500 players each playing the "1000 steps"
game, and finally 2000 players each playing a "10,000 steps"
game. These plots are from a NetLogo model (that you use to
explore these issues . . . see link in the references). The graphs
are log-linear – thus helping to see "exponential change" over
time.
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Playing the 1.5 / 0.6 game for 1000 steps (NetLogo model)
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500 players playing the 1.5 / 0.6 game for 1000 steps
(NetLogo model)
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2000 players playing the 1.5 / 0.6 game for 10000 steps
(NetLogo model)
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We can see that despite the fact that the expected value of the
game at each step is 1.05 (which is > 1), nonetheless, this is
not a good game to play many times over (assuming that you
"let it ride" each time).

Feeling lucky?

All right – let’s play a slightly different game. The general
setup is the same, except instead of multiplying your wealth at
each step by either 1.5 (on heads) or 0.6 (on tails), we’ll draw
your "multiplier" from a normal distribution with mean µ and
variance σ2. In other words, we’ll play the game with

v(j +1) = v(j) ∗Xj
where Xj ∈ Normal(µ, σ2), and you "let it ride" n times.
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Actually, I’ll do a little better than that . . . I’ll put a "floor" on
the multiplier X: if X < 0.001, I’ll replace X by 0.001 before I
multiply. Note that this will keep your "winnings" from ever
going negative . . .

Should you be willing to play this game for, say, n = 1000 with
µ = 1.05 and σ2 = 0.15?

I’ll let you do some "estimated value" calculations.

But, following are some reasonably typical runs (in NetLogo) of
this, for 100, 500, 1000, and 10000 step games. In each case,
we are averaging 300 players’ results. Again, these are from
NetLogo, and are log-linear plots.

20



100 step game, with X ∈ Normal(1.05,0.15), averaging 300
players.
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500 step game, with X ∈ Normal(1.05,0.15), averaging 300
players.
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1,000 step game, with X ∈ Normal(1.05,0.15), averaging 300
players.
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10,000 step game, with X ∈ Normal(1.05,0.15), averaging 300
players.
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For 100 steps, things look pretty good – the return seems to
be growing exponentially (remember, the graphs are log-linear,
so a straight line is exponential growth – or decay . . . ). But, at
500 steps, things are starting to flop around. By the time we
get to 1,000 steps, things are looking pretty bad. And by
10,000 steps, we are clearly declining exponentially.
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Ergodicity ←

So, what does this have to do with ergodicity?

In general terms, a dynamical system is called ergodic if the
average over time of the system is equal to the "space"
(ensemble) average of the system. In other words, if a system
is ergodic, we can follow the trajectory of a single example
(realization) of the system in order to explore the whole space
of possible behaviors of the system.

If a system is ergodic, we should be able to learn about the
dynamics either by theoretical analysis of the ensemble behavior
of the system, or by tracking a relatively small number of
individual trajectories. In the examples we have been checking,
trying to predict the long term results (trajectories) by
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calculating estimated values in effect assumes that the systems
are ergodic – in other words, that an individual trajectory will
explore enough of the space of possibilities to approximate the
expected ensemble value.

What we have seen is that in our examples, expected values do
not do a good job of predicting individual trajectories. In fact,
even following "many" (hundreds?) of trajectories does not
reflect the ensemble average expected value.

In the heads/tails (1.5 / 0.6) multiple steps games, larger
payoffs are skewed to smaller numbers of tails. In order to be a
winner, you need to have enough more heads than tails (i.e.,
something less than 45% tails). You do have a chance of being
a large winner (e.g., if you got 1,000 heads in a row in the
"1,000 steps" game, you would win something like $10176 –
but of course the probability of that happening would be
2−1000 ≈ 10−301).
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An important issue is the role of time (history) in the
dynamics. For example, if you are playing the 1,000 step game,
and in the first 100 steps you have seen 50 tails, there is no
chance that later in the game your trajectory will explore
portions of the space having fewer than 50 tails. And, in
general, each time you see a tails, more of the "good" part of
the space of possibilities is cut off from future exploration.
Thus, the history of the trajectory matters, and the system is
not ergodic. This means that the ensemble average (i.e., the
expected value) is not a good estimator of the results of
actually playing the "1,000 steps" game.

On the next few pages are some plots that show the
relationship of the binomial distribution to the "expected
value" concentrations. To see things better, the concentration
of "expected value" is "normalized".
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Binomial distribution (p = 1
2, n = 20)(blue) and

"normalized concentration of expected value" (1.5,0.6) (green)
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Binomial distribution (p = 1
2, n = 100)(blue) and

"normalized concentration of expected value" (1.5,0.6) (green)
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Binomial distribution (p = 1
2, n = 1000)(blue) and

"normalized concentration of expected value" (1.5,0.6) (green)
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histogram of number of tails (losses) for 500 players, each
playing the "1000 step" game (NetLogo model)
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We can see that for relatively "small" values of n, the n-steps
game will be in a realm where there is reasonable "overlap"
between the central tendency of the binomial distribution and
the "concentration of expected value." But, as n gets larger,
there is separation between the two. Thus, at the beginning,
the "expected value" will be a reasonable estimate of the
return from the game. But, at some point, the non-ergodicity
will take over, and the history of the trajectory will win out.

By averaging the trajectories of many "players", we can
increase the likelihood that at least some players will (for a
while, . . . ) explore the more favorable regions of the space of
possibilities. But, eventually, the law of large numbers will take
over, and with overwhelming probability, things will go badly.
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More General Analysis ←

One issue that we might consider is the effect of the precise
values (1.5 and 0.6) that we have chosen to explore. In fact,
those values were chosen with some malice aforethought, to
make the demonstration / pedagogy more effective.

In particular, the values were chosen so that (at least), the
expected value was greater than 1 (0.5 ∗ 1.5+ 0.5 ∗ 0.6 = 1.05),
but the product of the two was less than 1 (1.5 ∗ 0.6 = 0.9).

The "normal distribution multiplier" game is somewhat more
general, and thus perhaps amenable to some more careful
analysis.

I will also note that mathematical history, and the propensity of
researchers, are such that in fact, we are likely to find better

34



tools for analysis if we move to a continuous version of the
system, rather than a discrete, step-by-step version. We’ll
come back to this issue later.

So, for a while, let’s explore the game(µ, σ2, n, s) system where
µ and σ2 are the mean and variance of the normal distribution
from which the multipliers are taken, n is the number of steps
in the game, and s is the number of different trajectories we will
follow (typically, we will average over the s trajectories . . . ).

The "value" of the game is thus

V (game(µ, σ2, n, s)) =
1

s

s∑
i=1

 n∏
j=1

Xj


where Xj ∈ normal(µ, σ2) are independent, identically
distributed random variables.
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We are interested in exploring the interactions among the
various parameters.

Following are several examples. In particular, they are examples
of

game(µ, σ2, n, s)

with µ = 1.05, n = 20,000, s = 2000, and σ2 = 0.12,0.11,0.10,

0.09,0.08.

Thus, we are doing a parameter sweep on σ2, but keeping the
other parameters constant. There are some interesting
differences for the various values of σ2.
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2000 players playing the "normal" µ = 1.05, σ2 = 0.12 for
20,000 steps game (NetLogo model)
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2000 players playing the "normal" µ = 1.05, σ2 = 0.11 for
20,000 steps game (NetLogo model)
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2000 players playing the "normal" µ = 1.05, σ2 = 0.10 for
20,000 steps game (NetLogo model)
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2000 players playing the "normal" µ = 1.05, σ2 = 0.09 for
20,000 steps game (NetLogo model)
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2000 players playing the "normal" µ = 1.05, σ2 = 0.08 for
20,000 steps game (NetLogo model)
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We won’t go into detailed analysis here (see references, below).
But, what we find is that the time average of the system is
(largely) controlled by

µ−
σ2

2
.

We are mostly interested in µ greater than 1.

When µ− σ2

2 > 1, the system (largely) grows exponentially,
more or less following the expected value, or ensemble average
of the system.

If µ− σ2

2 = 1, the long term system average is roughly constant.

If µ− σ2

2 < 1, the system (generally) decays exponentially.
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More Multiplicative Random Walks ←

Let’s look at this from the perspective of multiplicative random
walks. We have, for an individual trajectory of the system

v(j +1) = v(j) ∗Xj
where Xj is a random variable. Thus, for a game of n steps,
and assuming v(0) = 1, we have

v(n) =
n∏

j=1

Xj

In the cases we have been exploring, we are assuming the Xj
are independent, identically distributed.

What we have, then, is that the v(n) are also random variables.
Let’s see what we can learn about the distribution of v(n).
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One thing we can do is take logs:

ln(v(n)) = ln

 n∏
j=1

Xj


=

n∑
j=1

ln(Xj)

Now, we can see that ln(Xj) are also i.i.d. random variables. If
we assume that the variance of ln(Xj) if finite, then a Central
Limit Theorem will tell us that

1

n
ln(v(n)) =

1

n

n∑
j=1

ln(Xj)

tends to a normal distribution as n grows.

This indicates that we should think in terms of a log-normal
distribution . . .
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The probability density function for a lognormal distribution is:

fX(x;µ, σ) =
1

xσ
√
2π

e
−(lnx−µ)2

2σ2 ,

with x > 0.

This gives us some ways to think about the system.

Another kind of approach is to move in the direction of
continuous versions of the system, in which case we can expect
to work with a stochastic differential equation such as

dx = x(µdt+ σdW )

where we have a drift term µ, σ tells the amplitude of the
noise, and

W (t) =
∫ t
0
dW

is a Wiener process.
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The Wiener process is, in general, a continuous-time form of
Brownian motion.

Things can be somewhat tricky when trying to solve (integrate)
stochastic differential equations. In particular, we have the
"noise" term dW , and we need to be careful how we understand
or interpret or model this term. In general, W (t) is considered
to be a continuous but nowhere differentiable function, so we
must be thoughtful when doing integration. There are various
approaches to such integration – an important approach is
often called the Itō calculus, after Kiyoshi Itō.

Much more discussion of these topics can be found in the
references.
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Some Implications ←

These issues of non-ergodicity have some interesting
implications.

The first observation is that we should be careful in drawing
conclusions about expected values when the system under
consideration may not be ergodic. If it would take extremely
large numbers of trajectories to do a reasonable job of
exploring the space of possibilities, we will need to find another
way of figuring out the typical time average of the system.

This also means that building models of economic or financial
systems are likely to require thoughtful analysis of any
non-ergodic aspects of the system.
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Another observation is that these issues have implications for
developing investment portfolios. As we have seen, an
investment opportunity with a given mean return (µ) may or
may not actually be a good investment, depending on the
variance of the system. A system with large variance may not
be just riskier, but in fact a bad investment.

This also has consequences for decisions about optimal
leverage. If an investor does not understand about the
non-ergodic effects of large variance, they may commit
excessive leveraged resources to bad investments.

Of course, this is not a simple issue. For example, the standard
deviation of an investment opportunity (often called the
volatility) is likely not to be stationary over time:
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CBOE Volatility Index (VIX) from December 1985 to May 2012
(daily closings), data from Chicago Board Options Exchange
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CBOE Volatility Index (VIX) from 1990 to 2013 (daily
closings), with S&P 500
data from Chicago Board Options Exchange
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In practice, we will be trying to estimate parameters from
sampled data, and developing models of various financial
instruments. What we have seen here reminds us that we need
to understand in some detail both the mean and variance of
the instruments.

In addition, a strong determiner of the ensemble average is the
extreme values. We need to consider the likelihood of
observing those extreme values, and beware of implicitly
believing that extreme values are adequately typical to be
representative in meaningful ways . . .
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Averages . . . cartoon by Joel Pett
http://www.kentucky.com/joel-pett/
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The next step, of course, is to extend to both additive and
multiplicative random walks, such as the Kesten Processes:

V (n+1) = V (n) ∗X(n) + Y (n)

where both X(n) and Y (n) are random variables. These
processes can lead to power law distributions.

And so it goes . . .

Feeling lucky?

NOTE: Many thanks to Ole Peters for his various talks at the
Santa Fe Institute’s Complex Systems Summer School, and for
conversations with participants in the Complex Systems
Summer Schools over the years . . .

2013 SFI Complex Systems Summer School Wiki
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