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What are nonlinear systems? ←

• Let’s start by adding another word to this, and ask the

question, ”What are nonlinear dynamical systems?” (and

we’ll go back to front . . . )

A reasonable thing to say is that a system is a collection of

entities that we can treat (for some purpose, in some

context) as a unity of interacting parts or elements. At

various times we will treat various collections of entities as

systems, or subsystems. We may at times ignore certain

elements that might otherwise be included. There will also

often be times when we will engage in abstraction, and

refer to a “system” when we are actually discussing,

manipulating, or analyzing an abstraction from the real

(physical) system we are interested in.
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A dynamical system is one which changes over time. It is

generally not unreasonable to assume that there is some

form of energy flow involved in such a system.

A nonlinear dynamical system is, as the name implies, a

system whose best description (behavior) is not linear.

There are various contexts and forms of description for the

concept linear. We’ll look at various examples as we go

along.
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A Linear Example (string) ←
(a little string theory :-)

• It will be worth our while to have some very specific

examples available, so let’s start with this one – consider a

string stretched tightly between two fixed endpoints:

We can pull the center of the string up:
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At the moment we release it, there will be forces acting on
the string. Let’s focus our attention on the center point of
the string (where we had taken hold of it to pull it up).
There will be forces pulling toward the two fixed ends:

There will be a “net” force acting on the center point of
the string:

Now let’s put a “reference frame” on the system, so we can
make things more explicit.
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We will measure the vertical displacement of the center

point of the string relative to the “resting position,” with

positive up and negative down:

0

+

–

x

At this point we’ll make a set of simplifying assumptions,

and in particular treat this as a linear system (in a sense to

be made more explicit below).
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• Among the assumptions we’ll make are:

– Everything is nicely symmetric (in particular, the force is

exactly vertical).

– The force is very simple (no complications from friction,

etc.).

– The force changes linearly with the displacement of the

center point of the string.

– The motion is always continuous and smooth

(differentiable), and thus, also,

– Newtonian mechanics (and all that that entails, including

all the machinery of the calculus . . . )
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• Now we’ll set this up as a (Newtonian) differential system.
The (vertical) displacement of the center point of the
string will be denoted by x (which we will recall is actually a
function of time t, but we will generally simplify the
notation as x rather than x(t)). We will (often) denote the
derivative of a function with respect to time as

ẋ =
dx(t)

dt
and the second derivative as

ẍ =
d2x(t)

dt2
.

As appropriate, we will refer to velocity and acceleration as

v = ẋ

and

a = v̇ = ẍ.
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For the time being, we will assume a very simple form for

the force on the center point:

F = −x

(Note: these should really be vectors ~F = −~x, but we’ll

keep the notation simple for now . . . ). This is the place at

which we are doing a linear approximation, and thus are

working with a linear dynamical system.

Now we invoke Newton, and his fundamental equation of

motion:

F = ma

(and we’ll use units where m = 1, and thus write F = a).
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• Putting the pieces together, our system is given by the

linear ordinary differential equation:

a = F = −x

or

ẍ = −x

or

ẍ+ x = 0.

We can use the standard machinery of calculus to solve this

differential equation.
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The characteristic polynomial of this differential equation is

z2 + 1 = (z + i)(z − i)

with roots z = i and z = −i. Hence the general form of the

solution is

x = x(t) = b0e
it + b1e

−it.

Now we can remember (use) the definition

ex =
∞∑
n=0

xn

n!
,
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from which we get

eit =
∞∑
n=0

(it)n

n!

= 1 + it−
t2

2!
− i

t3

3!
+
t4

4!
+ · · ·

= 1−
t2

2!
+
t4

4!
− · · ·

+ it− i
t3

3!
+ i

t5

5!
− · · ·

=
∞∑
n=0

(−1)n
t(2n)

(2n)!
+ i

∞∑
n=0

(−1)n
t(2n+1)

(2n+ 1)!

= cos (t) + i sin (t).

Then, using some standard techniques (and observing that

cos (t) and sin (t) are linearly independent), we find that the
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general solution to our system can be written as:

x(t) = c0 cos (t) + c1 sin (t).

Of course, if we didn’t want to be reminded of the general

method of solving linear ordinary differential equations, or

the definition of the exponential function, or Euler’s formula

(eit = cos (t) + i sin (t)), we could have just observed that

d2 cos (t)

dt2
= − cos (t)

and

d2 sin (t)

dt2
= − sin (t)

and gone straight to our general solution :-)
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• There is another nice way to represent such a second order

ordinary differential equation, as a system of first order

differential equations.

In this example, we start with the equation

ẍ+ x = 0,

then introduce a new variable v = ẋ (which we have seen

before – the velocity), and then express things as a system:

ẋ = v

v̇ = −x

This is a very general approach, which can also be applied

to nth order equations, resulting in a system n first order

equations.
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We can then rewrite the system in vector/matrix notation:[
ẋ
v̇

]
=

[
0 1
−1 0

] [
x
v

]
(note the convenient use of column notation for vectors).

Changing notation slightly, to simply extension to nth order:[
ẋ1
ẋ2

]
=

[
0 1
−1 0

] [
x1
x2

]

and, writing x for

[
x1
x2

]
, ẋ for

[
ẋ1
ẋ2

]
, and A for

[
0 1
−1 0

]
, we

can write

ẋ = Ax.
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Generalizing to nth order, writing x for

x1
...
xn

, etc., and also

allowing a constant bi to be added to each row, we have a

system

ẋ = Ax + b.

In this form, it is easy to see that these are linear systems.

There is a well developed theory for solving such systems

(using eigenvalues/eigenvectors, etc.), and even for

generalizations where A and b can be time dependent:

ẋ = A(t)x + b(t).

Discussion of this is available in various places, such as

here: http://www.unf.edu/˜ mzhan/chapter4.pdf.
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• For future reference, here is an example of what a nonlinear
system would like in this sort of notation (of course, the
right hand sides won’t be linear, and hence we won’t get
the nice simple matrix representation).

These are the (famous) Lorenz equations, which give rise
to the Lorenz attractor:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

where σ is the Prandtl number, ρ is the Rayleigh number,
and β is another adjustable parameter. All of σ, ρ, and β

are positive, with typical values σ = 10, β = 8/3, and ρ is
varied. When ρ = 28, the system exhibits chaotic behavior.
You can see the nonlinear (mixed) terms in the second and
third equations (the xz and xy terms).
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• Let’s go back to our string example (i.e., our simple
harmonic oscillator). For ease of reading, let’s also go back
to our notation of position x and velocity v, or, when we
want to clarify the time dependence, x(t) and v(t):

ẋ = v ẋ(t) = v(t)

v̇ = −x v̇(t) = −x(t)

The simplest solution to this system is x(t) = cos (t) (and,
of course, v(t) = − sin (t)). We can visualize the behavior of
the system by plotting x(t):

t

x
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We can also try plotting both x(t) and v(t) on the same
graph:

t

x

v

x

v

Before long, this can get fairly messy. We would like better
ways to visualize the system.

One important point is that this is a fully deterministic
system, and the state of the system is completely specified
once we know x and v. We can thus visualize the system in
state space (also called phase space), with one dimension
for each variable. Each point in phase space represents the
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state of the system at a particular time, and over time the

system will trace a trajectory through phase space.

For our simple harmonic oscillator, the phase space

trajectory takes a particularly nice form:

x

v [
x(t)
v(t)

]

[
x(0)
v(0)

]

21



• We can also think about the vector field consisting of the

derivatives. Associated with each point in phase space,

there is the vector of the velocity/acceleration values. At

the point

[
x(t)
v(t)

]
there is the derivative vector

[
v(t)
−x(t)

]
:

x

v
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For a given trajectory in phase space, the derivative vectors

along the trajectory will be tangent to the trajectory at

each point:

x

v
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We can even use this to find (at least an approximation to)

a trajectory, given an initial point (initial condition) in

phase space. The basic idea comes from the definition of

the derivative:

df(t)

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t

which means that, for small ∆t, we have the approximation

df(t)

dt
≈
f(t+ ∆t)− f(t)

∆t
or,

df(t)

dt
∗∆t ≈ f(t+ ∆t)− f(t)

and thus the approximation

f(t+ ∆t) ≈ f(t) +
df(t)

dt
∗∆t.
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In the case of our simple harmonic oscillator, we have the
approximation[

x(t+ ∆t)
v(t+ ∆t)

]
=

[
x(t)
y(t)

]
+

[
ẋ(t) ∗∆t
v̇(t) ∗∆t

]

=

[
x(t)
y(t)

]
+

[
v(t) ∗∆t
−x(t) ∗∆t

]
.

Working with our particular system, let’s do a couple of
steps, starting at t = 0, and with ∆t = 0.1. We will have[
x(0)
y(0)

]
=

[
1
0

]
, and

[
ẋ(0)
v̇(0)

]
=

[
0
−1

]
. Our first step of

approximation will give us[
x(0.1)
v(0.1)

]
≈
[
1
0

]
+

[
0 ∗ 0.1
−1 ∗ 0.1

]

=

[
1
−0.1

]
.
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The next three steps of our approximation will be:[
x(0.2)
v(0.2)

]
≈
[

1
−0.1

]
+

[
−0.1 ∗ 0.1
−1 ∗ 0.1

]

=

[
0.99
−0.2

]
.

and [
x(0.3)
v(0.3)

]
≈
[

0.99
−0.2

]
+

[
−0.2 ∗ 0.1
−0.99 ∗ 0.1

]

=

[
0.97
−0.299

]
and [

x(0.4)
v(0.4)

]
≈
[

0.97
−0.299

]
+

[
−0.299 ∗ 0.1
−0.97 ∗ 0.1

]

=

[
0.9401
−0.396

]
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This will look like (I have gone ahead and added several
more steps):

x

v

The approximation starts out doing a reasonable job (but
over time it does drift away from the real trajectory . . . ).
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• We’ll keep in mind this approximation approach, and come

back to it later. In particular, we’ll need to think some

about what cautions we should keep in mind when using

approximations. But, let’s briefly return now to the thrilling

days of yesteryear, and do a little bit more with linear

systems.

Our linear approximation of the string system clearly leaves

out a bunch of stuff. In particular, we know perfectly well

that a vibrating string won’t go on vibrating forever.

Things like friction (both internal within the string itself,

and external, like air resistance) will play a role in the

dynamics. We can improve our system by adding a friction

term. In keeping with our simplification of linearity, a

reasonable approximation of the friction term is that it

depends linearly on velocity. Keeping terms and constants
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simple, we can learn a reasonable amount by studying this

system (the second term in the v̇ line is friction):[
ẋ
v̇

]
=

[
v

−x− bv

]
.

Using the “characteristic polynomial” approach, we can

look at ẍ = −x− bẋ or ẍ+ bẋ+ x = 0, and thus work with

r2 + br + 1 = 0

giving us

r =
−b±

√
b2 − 4

2

or, assuming |b| < 2,

r = −
b

2
± i

√
4− b2

2
.
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From this, we get a solution to the system in the form

x(t) = e(− b2+i

√
4−b2
2 )t + e(− b2−i

√
4−b2
2 )t

= e−
b
2t

(
ei
√

4−b2
2 t + e−i

√
4−b2
2 t

)

= e−
b
2t ∗ 2 cos

(√
4− b2

2
t

)
which is decaying oscillations:
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In phase space, this system spirals in toward (0,0) (see

appendix 1):

x

v
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• We can characterize various points in phase space, and

various trajectories.

In the case of the simple harmonic oscillator, for any

starting point (initial condition), the resulting trajectory is a

simple closed trajectory – a periodic orbit.

x

v
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In the special case of starting at

[
0
0

]
, the system is at a

fixed point. This fixed point is, however, not stable, in the

sense that if some noise jostles the system, it will follow a

periodic orbit somewhat away from

[
0
0

]
.

On the other hand, in the case of of the damped harmonic

oscillator, any initial condition will tend toward

[
0
0

]
as

t→∞.

[
0
0

]
is a fixed point, and is an attracting stable fixed

point, in the sense that if noise jostles the system, it will,

as t→∞, return to

[
0
0

]
.
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For any of these continuous systems (i.e., systems where t

is a continuous variable), we can get at new system by

replacing t with −t. In the case of the simple harmonic

oscillator, there is complete symmetry, and the new system

is indistinguishable from the original – in particular, all

trajectories are closed periodic orbits.

In the case of the damped harmonic oscillator, there is a

fixed point at

[
0
0

]
, but all other trajectories spiral out (in

phase space) away from

[
0
0

]
. In this case,

[
0
0

]
is an

unstable, repelling fixed point.
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Discrete Linear Systems ←

• The systems we have been looking at all have time (t) as a

continuous variable (and we have been limiting ourselves to

smooth, i.e., differentiable, systems).

Now I’d like to move to discrete systems, where time

proceeds in steps rather than continuously. In other words,

instead of looking at the variable x(t), we will now take

time to only take integral values, and we will be interested

in systems with values x0, x1, x2, . . .

Instead of differential equations, we will be working with

difference equations. The general form of a (one variable)

difference equation is

xn+1 = f(xn, xn−1, . . . , x0, c).
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A very simple example is the Fibonacci sequence. This is

given by the difference equation

xn+2 = xn+1 + xn.

This is a second order difference equation. Once we specify

initial conditions (e.g., x0 = 0, x1 = 1), we have the

solution sequence 0,1,1,2,3,5,8,13,21, . . .

We can solve linear difference equations for the general

solution for the nth term using a procedure similar to the

approach for linear differential equations. For the Fibonacci

sequence, we rewrite the equation as

xn+2 − xn+1 − xn = 0,

and then work with the characteristic polynomial

r2 − r − 1 = 0.
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From this, we get

r =
1±
√

1 + 4

2
=

1±
√

5

2
.

The general form of the solution is then

xn = a1

(
1 +
√

5

2

)n
+ a2

(
1−
√

5

2

)n
.

Once we specify the initial conditions, we can solve for a1

and a2. For example, when x0 = 1 and x1 = 1, we get

a1 ∗ 1 + a2 ∗ 1 = 0

a1 ∗
(

1 +
√

5

2

)
+ a2 ∗

(
1−
√

5

2

)
= 1,

from which a2 = −a1, and so

a1 ∗
(

1 +
√

5

2

)
− a1 ∗

(
1−
√

5

2

)
= 1,
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and hence

a1 =
1√
5

a2 = −
1√
5

and so

xn =
1√
5
∗
(

1 +
√

5

2

)n
−

1√
5
∗
(

1−
√

5

2

)n
.

This is a very general approach (with some minor subtleties

when dealing with repeated roots) – and, of course, there

are the problems of finding the roots for higher order

polynomials, but this basically gets us going on general

linear difference equations.
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The Logistics Equation (derivation) ←

• Now it’s time to get down to business, and start exploring a

specific nonlinear example. We’re going to look at a classic

example from biology, concerning population growth.

We’ll start by considering a single species, living in an

environment where it depends on a consumable resource.

So, imagine a beaker of sugar water, into which we put a

single bacterium:
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As time passes, the bacteria reproduce (by dividing, time

lapse pictures, bacteria greatly magnified . . . ):

P0 P1 P2 P3 P4

The population of bacteria at time n+ 1 will be given by

Pn+1 = 2Pn (with P0 = 1),

and so in general

Pn = 2n.
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• Now we’ll ask the traditional question at this point: If we

put the first bacterium in the beaker at 9:00 am, the

bacteria divide every 10 minutes, and the beaker is

completely full of bacteria at 12:00 noon, at what time was

the beaker exactly half full of bacteria?

The answer is clearly “11:50 am.” (Now we’re supposed to

think about natural resources like oil, and oil consumption

doubling every 20 years – if in all the time of oil

consumption up until now we have consumed half the total

reserve of oil, in how many years will we have consumed all

the oil? etc. . . . )

But the question I really want to ask is, “What will the

beaker look like at 10 minutes after 12:00 noon?”

The first thought is that there will be sugar water and

bacteria all over the table because the beaker will have
41



overflowed from the next doubling (it was completely full at

12:00 noon) – but in the real world, that can’t be right. In

fact, there won’t be any live bacteria in the beaker at 10

minutes after 12:00 noon, because they all will have died of

starvation! The beaker was completely full of bacteria, so

there was no sugar water left . . .

In fact, as the bacteria population gets closer to filling the

beaker, there will be a downward pressure on population –

there will be increasing competition for scarce resources.

Therefore, a better model of the bacteria population at a

given time n+ 1 will be

Pn+1 = 2xn(M − Pn)

where the 2 is from population growth by doubling, and M

is the maximum number of bacteria that can fit in the

beaker. Note that this corresponds with the idea that if the
42



beaker is ever completely full of bacteria, in the next time
step the population will go to 0 because there will be mass
starvation . . .

• Now let’s simplify the units – instead of keeping track of the
total population Pn, we’ll let xn = Pn

M , that is, the proportion
of the maximum population (also sometimes called the
carrying capacity) that we have at time n. We will thus
have 0 ≤ xn ≤ 1. Let’s also generalize to other species that
might have a net birth rate R other than 2, so that we will
have the classic logistics equation for population of a single
species in a resource limited environment:

xn+1 = R ∗ xn ∗ (1− xn).

Note that this has an x2
n term, is thus nonlinear, and can’t

be “solved” in any straightforward way . . .
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The Logistics Equation (analysis) ←

• The fact that we can’t “solve” the logistics equation

doesn’t mean that we can’t study its behavior, or analyze

its characteristics. Let’s do some work on that. We can

start by just observing the system in action.

For our first example, let’s look at what happens when

R = 1. We’ll choose a starting value of x0 = 1
2. We will

have

x0 =
1

2

x1 = 1 ∗
1

2
∗ (1−

1

2
) =

1

4

x2 = 1 ∗
1

4
(1−

1

4
) =

1

4
∗

3

4
=

3

16
. . .
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Plotting xn vs. n, we see (first x0 = 1
2, then x0 = 0.75):

xn

1

xn+1 = 1.0 ∗ xn ∗ (1− xn), x0 = 1
2

n

xn

1

xn+1 = 1.0 ∗ xn ∗ (1− xn), x0 = 0.75

n
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Let’s look at some other values of R (and values of x0):

xn

1

xn+1 = 2.0 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 2.0 ∗ xn ∗ (1− xn), x0 = 0.75

n
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xn

1

xn+1 = 3.0 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 3.5 ∗ xn ∗ (1− xn), x0 = 0.5

n
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xn

1

xn+1 = 3.6 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 3.7 ∗ xn ∗ (1− xn), x0 = 0.5

n
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xn

1

xn+1 = 3.8 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 3.9 ∗ xn ∗ (1− xn), x0 = 0.5

n
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xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.501

n
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xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.75

n

xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.751

n
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xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.751

n

xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.751

n
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xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.3

n

xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.01

n
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Let’s view the behavior of the system in a somewhat
different way. We’re going shift over into a form of phase
space for this system, where we will plot xn+1 against xn.
Note that for any value of R > 0, the right hand side is a
parabola opening down, with roots at xn = 0 and xn = 1.
The maximum value of the parabola occurs at xn = 1

2, and
the maximum value is R

4 .

xn

1

xn+1

xn+1 = xn

xn+1 = Rxn(1− xn)
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Now we’ll follow the trajectory of the system. We’ll

visualize this by drawing a sequence of lines (often called a

cobweb diagram). The coordinates of the endpoints of the

lines will be (x0,0)− > (x0, x1), (x0, x1)− > (x1, x1),

(x1, x1)− > (x1, x2), (x1, x2)− > (x2, x2), etc.

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.9 ∗ xn(1− xn)

55



Let’s let that same example run for a while:

xn

1

xn+1

xn+1 = xn

x0 = 0.4 1

xn+1 = 3.9 ∗ xn(1− xn)

x0 = 0.4
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And even longer:

xn

1

xn+1

xn+1 = xn

x0 = 0.4 1

xn+1 = 3.9 ∗ xn(1− xn)

x0 = 0.4
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With a different starting value:

xn

1

xn+1

xn+1 = xn

x0 = 0.1 1

xn+1 = 3.9 ∗ xn(1− xn)

x0 = 0.1
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And even longer:

xn

1

xn+1

xn+1 = xn

x0 = 0.1 1

xn+1 = 3.9 ∗ xn(1− xn)

x0 = 0.1
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For other values of R (320 iterations):

xn

1

xn+1

xn+1 = xn

x0 = 0.5 1

xn+1 = 3.828 ∗ xn(1− xn)

x0 = 0.5
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And slight changes (also 320 iterations):

xn

1

xn+1

xn+1 = xn

x0 = 0.5 1

xn+1 = 3.829 ∗ xn(1− xn)

x0 = 0.5
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• Now we’ll be a little more systematic in our analysis. We’ll

start with small values of R, where the dynamics are

relatively simple. Let’s look at the slope of the tangent line

to the parabola at 0. We are working with the parabola

P (x) = R ∗ x ∗ (1− x), or P (x) = −Rx2 +Rx, so the

derivative is P ′(x) = −2Rx+R. We thus have P ′(0) = R,

and hence when R ≤ 1, the entire parabola (for x > 0) lies

below the line xn+1 = xn. In this case, the dynamics just

die away to zero (i.e., limn→∞(xn) = 0). In particular, 0 is

an attracting fixed point of the system. (Note that for any

value of R, 0 is a fixed point of the system.)

For R ≤ 1, the dynamics don’t depend in any significant

way on the starting value – almost immediately, the system

begins decaying to 0, and continues directly there.
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 0.9 ∗ xn(1− xn)

x0 = 0.7
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For R > 1, we have a new feature – the parabola crosses

the line xn+1 = xn at some point x > 0. In particular, we

solve for that crossing point by setting xn = xn+1 – in other

words, we have

xn = R ∗ xn ∗ (1− xn),

and so

xn −Rxn(1− xn) = 0

xn −Rxn +Rx2
n = 0

Rx2
n + (1−R)xn = 0

xn(Rxn + 1−R) = 0,

and hence the crossing point occurs at

xn =
R− 1

R
.
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For all values of R > 1, this crossing point is a fixed point

of the system. For values 1 < R < 3, this is an attracting

fixed point for any starting value x0 (except x0 = 0 or 1,

and 0 is now a repelling fixed point):

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 1.5 ∗ xn(1− xn)

x0 = 0.2
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 1.5 ∗ xn(1− xn)

x0 = 0.9
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 2.0 ∗ xn(1− xn)

x0 = 0.9
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 2.0 ∗ xn(1− xn)

x0 = 0.05
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 2.8 ∗ xn(1− xn)

x0 = 0.9

Note that for 2 < R < 3, the parabola is coming back down
at the fixed point R−1

R , and so the trajectory spirals in . . .
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When R = 3, we have a new phenomenon. We still have a

fixed point at R−1
R , but it is no longer and attracting fixed

point:

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.9
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.63
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.5
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For R slightly bigger than 3, we have new behavior:

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.075 ∗ xn(1− xn)

x0 = 0.5
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Or, starting closer to the fixed point:

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.075 ∗ xn(1− xn)

x0 = 0.65
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As R passes through 3, the fixed point goes from being an

attracting fixed to point to being an unstable fixed point

(note that we actually already observed this as R passed

through 1, where 0 became an unstable fixed point).

By looking more closely at the region of the fixed point as

R passes through 3, we can understand better what is

happening. In particular, the critical feature of the system

is that as R goes through 3, the slope of the tangent to the

parabola goes from above −1 to below −1 (i.e., becomes

more steep).
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0.63

0.69

0.69

xn+1 = 2.95 ∗ xn(1− xn)

x0 = 0.64

0.64

0.69

0.69

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.645
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0.64

0.69

0.69

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.65

0.64

0.69

0.69

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.655
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0.63

0.71

0.71

xn+1 = 3.05 ∗ xn(1− xn)

x0 = 0.667

If we zoom out from this, we see another interesting

phenomenon arise . . .
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0.57

0.77

0.77

xn+1 = 3.05 ∗ xn(1− xn)

x0 = 0.667
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0.57

0.77

0.77

xn+1 = 3.05 ∗ xn(1− xn)

x0 = 0.575
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• We are seeing here an orbit of period 2 – the system
bounces back and forth between two values. For values of
R < 3 we had an attracting fixed point. The attracting
fixed point is at 0 for 0 ≤ R ≤ 1, and at R−1

R for 1 < R < 3.
At R = 3 we still have the fixed point (and in fact that
fixed point remains for all R ≥ 1), but it is no longer a
stable fixed point. For R > 3, it is a repelling fixes point –
values near, but not exactly on, the fixed point will, in
successive iterations, move further away.

At R = 1 and R = 3, changes in R result in significant
changes in the dynamics of the system. These significant
changes in the dynamics of the system resulting from
changes in a controlling parameter are called bifurcations.
At R = 1, the stable (attracting) fixed point at 0 becomes
unstable, and becomes a repelling fixed point. We acquire a
new stable (attracting) fixed point at R−1

R .
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At R = 3, the fixed point at R−1
R becomes unstable, and we

acquire a new attracting stable orbit of period 2. These is

the first of a sequence of bifurcations in the dynamics of

the logistics equation. At each of these bifurcations, an

orbit of period 2n becomes unstable (although it continues

to exist in the dynamics), and a new stable orbit of period

2n+1 arises. This process is called a period doubling

bifurcation cascade.

We can calculate the x values of this period 2 orbit by

looking at two steps of the difference equation:

xn+2 = Rxn+1(1− xn+1)

= R(Rxn(1− xn))(1−Rxn(1− xn))

= R2xn(1− xn)(1−Rxn +Rx2
n)

= R2xn(−Rx3
n + 2Rx2

n − (R+ 1)xn + 1)
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We are looking for period 2 orbits – in other words, values

where xn+2 = xn. We therefore want

xn = R2xn(−Rx3
n + 2Rx2

n − (R+ 1)xn + 1)

or

R2xn(−Rx3
n + 2Rx2

n − (R+ 1)xn + 1)− xn = 0.

This is a 4th degree polynomial is xn, which, for R > 3, has

4 roots. It is easy to see that xn = 0 is a root (but we

already knew that, because 0 is a fixed point of the original

equation, and hence also repeats itself every 2 steps).

Similarly, xn = R−1
R is a root, because it too is a fixed point.

We could proceed with the (somewhat messy) algebra to

find the other two roots, but instead let’s look at the

cobweb diagram for xn+2 vs. xn (in these diagrams, we’re

also seeing the original parabolas, for reference . . . ).
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You can see the bifurcation happen as R reaches 3.0:

xn

1

xn+2

xn+1

xn+2 = xn

R = 2.8

xn

1

xn+2

xn+1

xn+2 = xn

R = 3.0
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and moves on past . . .

xn

1

xn+2

xn+1

xn+2 = xn

R = 3.2

xn

1

xn+2

xn+1

xn+2 = xn

R = 3.7
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We can also look at higher order iterates:

xn

1

xn+4

xn+2

xn+1

xn+4 = xn

R = 3.829
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For various values of R:

xn

1

xn+4

xn+2

xn+1

xn+4 = xn

R = 3.9
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We can do cobweb diagrams also:

xn

1

xn+4

xn+4 = xn

R = 3.829

x0 = 0.3
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With changing starting values:

xn

1

xn+4

xn+4 = xn

R = 3.829

x0 = 0.5
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And changing values of R:

xn

1

xn+4

xn+4 = xn

R = 3.828

x0 = 0.5
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Appendix 1 ←

Just to check (and practice our derivatives :-) with the damped
harmonic oscillator example . . .

We had:

x(t) = e−
b
2t ∗ 2 ∗ cos

(√
4− b2

2
t

)
from which,

v(t) = ẋ(t) = −
b

2
e−

b
2t ∗ 2 cos

(√
4− b2

2
t

)

− e−
b
2t ∗

√
4− b2 sin

(√
4− b2

2
t

)

= −e−
b
2t

(
b ∗ cos

(√
4− b2

2
t

)
+
√

4− b2 ∗ sin

(√
4− b2

2
t

))
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Combining the terms:

− x(t)− bv(t)

= −e−
b
2t ∗ 2 cos

(√
4− b2

2
t

)

+ be−
b
2t

(
b ∗ cos

(√
4− b2

2
t

)
+
√

4− b2 sin

(√
4− b2

2
t

))

= e−
b
2t

(
(b2 − 2) cos

(√
4− b2

2
t

)
+ b

√
4− b2 sin

(√
4− b2

2
t

))
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And, sure enough, when we calculate v̇(t), we get the same

thing:

v̇(t) =
b

2
e−

b
2t

(
b ∗ cos

(√
4− b2

2
t

)
+
√

4− b2 sin

(√
4− b2

2
t

))

− e−
b
2t

(
−b ∗

√
4− b2

2
sin

(√
4− b2

2
t

)
+

4− b2

2
cos

(√
4− b2

2
t

))

= e−
b
2t

(
b2

2
cos

(√
4− b2

2
t

)
+ b

√
4− b2

4
sin

(√
4− b2

2
t

))

+ e−
b
2t

(
b

√
4− b2

2
sin

(√
4− b2

2
t

)
−

4− b2

2
cos

(√
4− b2

2
t

))

= e−
b
2t

(
(b2 − 2) cos

(√
4− b2

2
t

)
+ b

√
4− b2 sin

(√
4− b2

2
t

))
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Appendix 2 ←

Something will go here . . .
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