Intelligent Patterning

and problem solving

Tom Carter

CSU Stanislaus

December 27, 2018

Brief overview

(1) General problem solving
(2) Pattern recognition
(3) Symbols and signs
(4) Intelligent patterning
(5) Some history
(6) Making things look right
(7) What's wrong in computing today
(8) The intelligent mathematical assistant

General problem solving

- Understanding the problem
(1) Problem context and statement of the problem
(2) Solving the right problem (ill-posed and ill-conditioned problems)
(3) Preconceptions
(4) Language and restating the problem
- The role of experience
(1) Similar problems and analogy
(2) Appropriate tools
(3) Specific experience
- Three basic methods
(1) Plug and grind
(2) Guess and prove
(3) Look it up
- Hypothesis generation and testing
(1) Flexibility and freedom - willingness to try and fail
(2) Recognizing blind alleys, and the value of exploring
(3) Appropriate hypotheses
(4) Lateral thinking
- Recognizing solutions
(1) " A " solution vs. "the" solution
(2) Useful solutions
(3) When a "solution" solves an un-posed, but more significant problem

Pattern recognition

- Images ("visual patterns") vs.
"syntactic" patterns
- Symbols as patterns, and symbols as pattern labels
- Patterns of symbols
- Hierarchies of patterns, and symbols as tools for recognizing patterns
- Pattern manipulation
- Learning to recognize patterns, and pattern recognition as learning

Pattern recognition examples

- What number comes next in the sequence?
$1,1,2,3,5,8,13, \ldots$

Pattern recognition examples

- What number comes next in the sequence?
$1,1,2,3,5,8,13, \ldots$
- What number comes next in the sequence? $8,5,4,9,1,7,6,3, \ldots$

Pattern recognition examples

- What number comes next in the sequence?
$1,1,2,3,5,8,13, \ldots$
- What number comes next in the sequence?
$8,5,4,9,1,7,6,3, \ldots$
- What letter comes next in the sequence?

E, T, A, O, I, N, S, H, ...

Pattern recognition examples

- What number comes next in the sequence?
$1,1,2,3,5,8,13, \ldots$
- What number comes next in the sequence?
$8,5,4,9,1,7,6,3, \ldots$
- What letter comes next in the sequence?

E, T, A, O, I, N, S, H, ...

- In which row does Z go?

A, E, F, H, I, K, L, M, N, T, V, W, X, Y
B, C, D, G, J, O, P, Q, R, S, U

Pattern recognition examples

- What number comes next in the sequence?
$1,1,2,3,5,8,13, \ldots$
- What number comes next in the sequence?
$8,5,4,9,1,7,6,3, \ldots$
- What letter comes next in the sequence?

E, T, A, O, I, N, S, H, ...

- In which row does Z go?

A, E, F, H, I, K, L, M, N, T, V, W, X, Y
B, C, D, G, J, O, P, Q, R, S, U

- What letter comes next in the sequence?

W, L, C, N, I, T, ...

Symbols and signs

- The utility and power of symbols
- Choosing symbols, naming and pointing
- Symbols as "chunking" tools
- When to use symbols
(1) The importance of anonymity (e.g., the lambda calculus)
(2) Place holders (variables)
(3) Temporary and tentative symbols
- Signs, symbols, content and meaning

Intelligent patterning

- Creativity and Art
(1) Knowing when to pattern
(2) Symbol attachment and creation; patterns/symbols as revealers and concealers
(3) Levels of patterning
- Multiple patterns and selection
$(x-1)(x-2)(x-3)-6$
$x^{3}-6 x^{2}+11 x-12$
$(x-4)\left(x^{2}-2 x+3\right)$
- Adaptive pattern recognition
- Are the patterns really there?

Some history

- Physics
- Philosophy (theory of knowledge)
- Mathematics
(1) Matrix manipulation
(2) Topology
(3) Algebra
(C) Lie groups
(5) Manifolds and relativity theory
(Algebraic topology

Making things look right:

Consider this piece of mathematics (here, and the next page). How do we get this typeset? See the following page for ${ }^{1} T_{E} \mathrm{EX}$

We have the map $b_{n}: \Sigma^{2} U(n) \rightarrow S U(n+1)$ given by

$$
b_{n}(g, r, s)=\left[i(g), v_{n}(r, s)\right]
$$

where $i(g)$ is the inclusion, $[g, h]=g h g^{-1} h^{-1}$
and
$v_{n}(r, s)=$
$\left[\begin{array}{cccccc}\alpha & 0 & 0 & \cdots & 0 & \beta(-\bar{\alpha})^{0} \\ \beta(-\bar{\alpha})^{0} \bar{\beta} & \alpha & 0 & \cdots & 0 & \beta(-\bar{\alpha})^{1} \\ \beta(-\bar{\alpha})^{1} \bar{\beta} & \beta(-\bar{\alpha})^{0} \bar{\beta} & \alpha & \cdots & 0 & \beta(-\bar{\alpha})^{2} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \beta(-\bar{\alpha})^{n-1} \bar{\beta} & \beta(-\bar{\alpha})^{n-2} \bar{\beta} & \cdots & \cdots & \alpha & \beta(-\bar{\alpha})^{n} \\ -(-\bar{\alpha})^{n} \bar{\beta} & -(-\bar{\alpha})^{n-1} \bar{\beta} & \cdots & \cdots & -(-\bar{\alpha})^{0} \bar{\beta} & -(-\bar{\alpha})^{n}\end{array}\right]$
where

$$
\begin{gathered}
\alpha=\alpha(r, s)=\cos (\pi r)+i \sin (\pi r) \cos (\pi s) \\
\beta=\beta(r, s)=i \sin (\pi r) \sin (\pi s)
\end{gathered}
$$

```
We have the map
            \$ b_n: \Sigma^2U(n) -> SU(n+1) \$ \newline
given by
            \ b_n(g, r, s) = Veft[ i(g), v_n(r, s) \right] \]
where $i(g)$ is the inclusion,
            $Veft[g, h\right] = ghgN {-1}h}\mathcal{N-1}$ \newline
and
$ v_n(r,s) = $
\ Veft[ begin{array{cccccc}
    \alpha & 0 & 0 & \cdots & 0 & beta (-loverline\\alpha})^0 \\
    lbeta (-loverline\\alpha})^0loverline{beta} &
            \alpha & 0 & \cdots & 0 &
            Wbeta (-loverline\\alpha})^1 \\
    \beta (-loverline{lalpha})^1\overline{\beta} & 
            Vbeta (-loverline{\alpha})^0loverline{beta} &
            lalpha & \codots & 0 & beta (-loverline{lalpha})^2 \\
    \vdots & lvdots & \vdots & & Ivdots & lvdots \\
    \vdots & \vdots & \vdots & \ddots & lvdots & \vdots \\
    \vdots & lvdots & \vdots & & Ivdots & Ivdots \\
    \beta (-loverline\\alpha})}\mathcal{N}{n-1}\\mathrm{ loverline{\beta} &
            veta (-loverline{\alpha})}\{n-2}loverline{\beta} &
            \cdots & \cdots & lalpha &
            \beta (-loverline{lalpha})^n \\
    -(-loverline{lalpha})^nloverline{\beta} &
            -(-loverline{lalpha})}\mathcal{Nn-1}\overline\\beta} &
            \cdots & \cdots & -(-loverline\\alpha})^0
            loverline{lbeta} & -(-loverline{lalpha})^n \\
    lend{array} \right]
V
where
\ \alpha = \alpha(r,s) =
    \cos(\pi r) + i \sin(\pi r)\\operatorname{cos(\pi s) \]}]
\ Vbeta = \beta(r,s) = i \sin(\pir)\sin(\pi s) \\
```


What's wrong in computing today

- Not enough resolution on displays (seems mostly solved ... :-)
- Not enough processing power and memory
- Not enough parallelism
- Software tools are (largely) "flat" and sequential rather than hierarchical

The intelligent mathematical assistant

- Adaptive symbolic input and output
- Strong basic skills (all of arithmetic through college calculus and elementary discrete structures)
- First order logic capabilities
- Adaptive "patterning" and "symboling"
- Elementary hypothesis generation and testing

