. . We have the map . . \$ b_n: \Sigma^2U(n) \rightarrow SU(n+1) \$ \newline . . given by . . \[ b_n(g, r, s) = \left[ i(g), v_n(r, s) \right] \] . . where $i(g)$ is the inclusion, . . $\left[g, h\right] = ghg^{-1}h^{-1}$ \newline . . and . . $ v_n(r,s) = $ . . \[ \left[ \begin{array}{cccccc} . . \alpha & 0 & 0 & \cdots & 0 & \beta (-\overline{\alpha})^0 \\ . . \beta (-\overline{\alpha})^0\overline{\beta} & . . \alpha & 0 & \cdots & 0 & . . \beta (-\overline{\alpha})^1 \\ . . \beta (-\overline{\alpha})^1\overline{\beta} & . . \beta (-\overline{\alpha})^0\overline{\beta} & . . \alpha & \cdots & 0 & \beta (-\overline{\alpha})^2 \\ . . \vdots & \vdots & \vdots & & \vdots & \vdots \\ . . \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ . . \vdots & \vdots & \vdots & & \vdots & \vdots \\ . . \beta (-\overline{\alpha})^{n-1}\overline{\beta} & . . \beta (-\overline{\alpha})^{n-2}\overline{\beta} & . . \cdots & \cdots & \alpha & . . \beta (-\overline{\alpha})^n \\ . . -(-\overline{\alpha})^n\overline{\beta} & . . -(-\overline{\alpha})^{n-1}\overline{\beta} & . . \cdots & \cdots & -(-\overline{\alpha})^0 . . \overline{\beta} & -(-\overline{\alpha})^n \\ . . \end{array} \right] . . \] . . where . . \[ \alpha = \alpha(r,s) = . . \cos(\pi r) + i \sin(\pi r)\cos(\pi s) \] . . \[ \beta = \beta(r,s) = i \sin(\pi r)\sin(\pi s) \]