Intelligent Patterning

 or
Why I've been doing computer science

Brief overview of where I'm headed:

- General problem solving
- Pattern recognition
- Symbols and signs
- Intelligent patterning
- Some history
- What's wrong in computing today
- The intelligent mathematical assistant

General problem solving

- Understanding the problem

1. Problem context and statement of the problem
2. Solving the right problem (ill-posed and ill-conditioned problems)
3. Preconceptions
4. Language and restating the problem

- The role of experience

1. Similar problems and analogy
2. Appropriate tools
3. Specific experience

- Three basic methods

1. Plug and grind
2. Guess and prove
3. Look it up

- Hypothesis generation and testing

1. Flexibility and freedom - willingness to try and fail
2. Recognizing blind alleys, and the value of exploring
3. Appropriate hypotheses
4. Lateral thinking

- Recognizing solutions

1. "A" solution vs. "the" solution
2. Useful solutions
3. When a "solution" solves an un-posed, but more significant problem

Pattern recognition

- Images ("visual patterns") vs.
"syntactic" patterns
- Symbols as patterns, and symbols as pattern labels
- Patterns of symbols
- Hierarchies of patterns, and symbols as tools for recognizing patterns
- Pattern manipulation
- Learning to recognize patterns, and pattern
recognition as learning

Pattern recognition examples

- What number comes next in the sequence? $1,1,2,3,5,8,13, \ldots$
- What number comes next in the sequence? 8, 5, 4, 9, 1, 7, 6, 3, ...
- What letter comes next in the sequence? E, T, A, O, I, N, S, H, ...
- In which row does Z go?

A, E, F, H, I, K, L, M, N, T, V, W, X, Y $B, C, D, G, J, O, P, Q, R, S, U$

- What letter comes next in the sequence? W, L, C, N, I, T, ...

Symbols and signs

- The utility and power of symbols
- Choosing symbols, naming and pointing
- Symbols as "chunking" tools
- When to use symbols

1. The importance of anonymity (e.g., the lambda calculus)
2. Place holders (variables)
3. Temporary and tentative symbols

- Signs, symbols, content and meaning

Intelligent patterning

- Creativity and Art

1. Knowing when to pattern
2. Symbol attachment and creation; patterns/symbols as revealers and concealers
3. Levels of patterning

- Multiple patterns and selection

$$
\begin{aligned}
& (x-1)(x-2)(x-3)-6 \\
& x^{3}-6 x^{2}+11 x-12 \\
& (x-4)\left(x^{2}-2 x+3\right)
\end{aligned}
$$

- Adaptive pattern recognition
- Are the patterns really there?

Some history

- Physics
- Philosophy (theory of knowledge)
- Mathematics

1. Matrix manipulation
2. Topology
3. Algebra
4. Lie groups
5. Manifolds and relativity theory
6. Algebraic topology

We have the map $b_{n}: \Sigma^{2} U(n) \rightarrow S U(n+1)$ given by

$$
b_{n}(g, r, s)=\left[i(g), v_{n}(r, s)\right]
$$

where $i(g)$ is the inclusion, $[g, h]=g h g^{-1} h^{-1}$ and
$v_{n}(r, s)=$
$\left[\begin{array}{cccccc}\alpha & 0 & 0 & \cdots & 0 & \beta(-\bar{\alpha})^{0} \\ \beta(-\bar{\alpha})^{0} \bar{\beta} & \alpha & 0 & \cdots & 0 & \beta(-\bar{\alpha})^{1} \\ \beta(-\alpha)^{1} \bar{\beta} & \beta(-\bar{\alpha})^{0} \bar{\beta} & \alpha & \cdots & 0 & \beta(-\bar{\alpha})^{2} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ \beta(-\bar{\alpha})^{n-1} \bar{\beta} & \beta(-\bar{\alpha})^{n-2} \bar{\beta} & \cdots & \cdots & \alpha & \beta(-\bar{\alpha})^{n} \\ -(-\bar{\alpha})^{n} \bar{\beta} & -(-\bar{\alpha})^{n-1} \bar{\beta} & \cdots & \cdots & -(-\bar{\alpha})^{0} \bar{\beta} & -(-\bar{\alpha})^{n}\end{array}\right]$
where

$$
\begin{gathered}
\alpha=\alpha(r, s)=\cos (\pi r)+i \sin (\pi r) \cos (\pi s) \\
\beta=\beta(r, s)=i \sin (\pi r) \sin (\pi s)
\end{gathered}
$$

We have the map
\$ b_n: \Sigma^2U(n) \rightarrow SU(n+1) \$ \newline given by

$$
b_n(g, r, s) = \left[i(g), v_n(r, s) \right]
$$

where $\$ \mathrm{i}(\mathrm{g}) \$$ is the inclusion,
\$\left[g, h\right] = ghg^\{-1\}h^\{-1\}\$ \newline
and
\$ v_n(r,s) = \$

$$
\left[\begin\{array\}\{cccccc\} }
\alpha \& 0 \& 0 \& \cdots \& 0 \& \beta (-\overline\{\alpha\})^0 \\
\beta (-\overline\{\alpha\}) ^O\overline\{\beta\} \&
\alpha \& 0 \& \cdots \& 0 \&
\beta (-\overline\{\alpha\})^1 \\
\beta (-\overline\{\alpha\})^1\overline\{\beta\} \&
\beta (-\overline\{\alpha\}) ^O\overline\{\beta\} \&
\alpha \& \cdots \& 0 \& \beta (-\overline\{\alpha\})^2 \\
\vdots \& \vdots \& \vdots \& \& \vdots \& \vdots \\
\vdots \& \vdots \& \vdots \& \ddots \& \vdots \& \vdots \\
\vdots \& \vdots \& \vdots \& \& \vdots \& \vdots \\
\beta (-\overline\{\alpha\})^\{n-1\}\overline\{\beta\} \&
\beta (-\overline\{\alpha\})^\{n-2\}\overline\{\beta\} \&
\cdots \& \cdots \& \alpha \&
\beta (-\overline\{\alpha\})^n \\
-(-\overline\{\alpha\}) \({ }^{\wedge}\) n\overline\{ \(\backslash\) beta \(\}\) \&
-(-\overline\{\alpha\}) ^\{n-1\}\overline\{\beta\} \&
\cdots \& \cdots \& -(-\overline\{\alpha\})~0
\overline\{ \(\backslash\) beta\} \& -(-\overline\{\alpha\})^n \\
\end\{array\} \right] }
$$

where
$\backslash[$ \alpha $=\backslash \operatorname{alpha}(r, s)=$
$\backslash \cos (\backslash p i r)+i \backslash \sin (\backslash p i r) \backslash \cos (\backslash p i \quad s) \backslash]$
$\backslash[\backslash$ beta $=\backslash \operatorname{beta}(r, s)=i \backslash \sin (\backslash p i r) \backslash \sin (\backslash p i s) \backslash]$

What's wrong in computing today

- Not enough resolution on displays
- Not enough processing power and memory
- Not enough parallelism
- Software tools are "flat" and sequential rather than hierarchical

The intelligent mathematical assistant

- Adaptive symbolic input and output
- Strong basic skills (all of arithmetic through college calculus and elementary discrete structures)
- First order logic capabilities
- Adaptive "patterning" and "symboling"
- Elementary hypothesis generation and testing

