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Brief overview of our topics:

• Hilbert spaces and quantum mechanics.

• Tensor products and entangled quantum
states.

• Quantum bits (qubits), the physics of com-
putation, elements of quantum computing.

• Tractability of computation (e.g., factoring
and NP/NP-complete problems).

• Theoretical models for quantum comput-
ing.

• Suggestions for practical implementations
of quantum computers.

• Problems and prospects.
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Hilbert space setting for
quantum mechanics

• A Hilbert space H is a complete normed
vector space over C :

1. H is a vector space over C

2. There is an inner product
〈·|·〉 : H x H → C
which is conjugate linear:
〈v|w〉 = 〈w|v〉
〈αv|w〉 = α〈v|w〉 for α ∈ C
〈v + w|z〉 = 〈v|z〉+ 〈w|z〉
〈v|v〉 ≥ 0
and
〈v|v〉 = 0 iff v = 0

3. From the inner product, as usual, we
define the norm of a vector:
‖v‖2 = 〈v|v〉

4. H is complete with respect to the norm.
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• We will typically use the bra/ket notation:

|v〉 is a vector in H , and

〈v| is the covector which is the conjugate

transpose of v.

This notation also allows us to represent

the outer product of a vector and covector

as |v〉〈w|, which, for example, acts on a vec-

tor |z〉 as |v〉〈w|z〉. For example, if {v1,v2} is

an orthonormal basis for a two-dimensional

Hilbert space, |v1〉〈v2| is the transformation

that maps |v2〉 to |v1〉 and |v1〉 to (0,0)T

since

|v1〉〈v2||v2〉 = |v1〉〈v2|v2〉 = |v1〉

|v1〉〈v2||v1〉 = |v1〉〈v2|v1〉 = 0|v1〉 =

(
0
0

)
.

Equivalently, |v1〉〈v2| can be written in ma-

trix form where |v1〉 = (1,0)T , 〈v1| = (1,0),

|v2〉 = (0,1)T , and 〈v2| = (0,1). Then

|v1〉〈v2| =
(

1
0

)
(0,1) =

(
0 1
0 0

)
.
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• A unitary operator U : H → H is a linear

mapping whose conjugate transpose is its

inverse: U† = U−1

• Unitary operators are norm preserving:

〈v|U†U |v〉 = 〈v|v〉 = ‖v‖2

• We will think of a quantum state as a (nor-

malized) vector |v〉 ∈ H , where we think

of 〈v|v〉 as the probability of observing the

state. For math folks, we are in effect

working in Complex projective space, nor-

malizing to 1 so that the probabilities make

sense.

• The dynamical evolution of a quantum sys-

tem is expressed as a unitary operator act-

ing on the quantum state. Note that prob-

abilities are preserved.
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• Eigenvalues of a unitary matrix are of the

form eiω where ω is a real-valued angle. A

unitary operator is in effect a rotation.

• In the Schrödinger equation, U is deter-

mined by the Hamiltonian or energy oper-

ator H via U = eiHt.

• A measurement consists of applying an op-

erator O to a quantum state v. To corre-

spond to a classical observable, O must be

Hermitian, O† = O, so that all its eigen-

values are real. If one of its eigenvalues λ

is associated with a single eigenvector uλ,

then we observe the value λ with probabil-

ity |〈v|uλ〉|2 (i.e., the square of the length

of the projection along uλ).
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• In general, if there is more than one eigen-

vector uλ associated with the eigenvalue λ,

we let Pλ be the projection operator onto

the subspace spanned by the eigenvectors,

and the probability of observing λ when the

system is in state v is ‖vPλ‖2.

• Most projection operators do not commute

with each other, and are not invertible.

Therefore, we can expect that the order

in which we do measurements will matter,

and that doing a measurement will irre-

versibly change the state of the quantum

system.
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Entangled quantum states,
tensor products, and qubits

• Tensor products
We can form tensor products of a wide va-
riety of objects. For example:

1. The tensor product of an n dimensional
vector u and a k dimensional vector v is
an nk dimensional vector u⊗ v.

2. If A and B are operators on n and k

dimensional vectors, respectively, then
A⊗B is an operator on nk dimensional
vectors.

3. if H1 and H2 are Hilbert spaces, then
H1 ⊗ H2 is also a Hilbert space. If H1
and H2 are finite dimensional with bases
{u1, u2, . . . un} and {v1, v2, . . . vm} respec-
tively, then H1 ⊗ H2 has dimension nm

with basis {ui⊗ vj|1 ≤ i ≤ n,1 ≤ j ≤ m}.
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• Tensor products obey a number of nice

rules, such as: For matrices A, B, C, D,

U , vectors u, v, w, and scalars a, b, c, d the

following hold:

(A⊗B)(C ⊗D) = AC ⊗BD
(A⊗B)(u⊗ v) = Au⊗Bv

(u+ v)⊗ w = u⊗ w + v ⊗ w
u⊗ (v + w) = u⊗ v + u⊗ w

au⊗ bv = ab(u⊗ v)

Thus for matrices,(
A B
C D

)
⊗ U =

(
A⊗ U B ⊗ U
C ⊗ U D ⊗ U

)
,

which specializes for scalars to(
a b
c d

)
⊗ U =

(
aU bU
cU dU

)
.
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• The conjugate transpose distributes over

tensor products, i.e.

(A⊗B)† = A† ⊗B†.

• The tensor product of several matrices is

unitary if and only if each one of the ma-

trices is unitary up to a constant. Let

U = A1 ⊗ . . . ⊗ An. Then U is unitary if

A
†
iAi = kiI and

∏
i ki = 1.

U†U = (A†1 ⊗ . . .⊗A
†
n)(A1 ⊗ . . .⊗An)

= A
†
1A1 ⊗ . . .⊗A†nAn

= k1I ⊗ . . .⊗ knI
= I
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• Note that 〈u⊗ v|w ⊗ z〉 = 〈u|w〉〈v|z〉. This

implies that 〈0⊗ u|0⊗ u〉 = 0, and there-

fore 0 ⊗ u must be the zero vector of the

tensor product Hilbert space.

This in turn implies (reminds us?) that the

tensor product space is actually the equiv-

alence classes in a quotient space.

In particular, if A and B are vector spaces,

F is the free abelian group on A × B, and

K is the subgroup of F generated by all

elements of the following forms (where

a, a1, a2 ∈ A, b, b1, b2 ∈ B,α a scalar):

1. (a1 + a2, b)− (a1, b)− (a2, b)

2. (a, b1 + b2)− (a, b1)− (a, b2)

3. (αa, b)− (a, αb)

then A⊗B is the quotient space F/K.

11



Qubits

• A quantum bit, or qubit, is a unit vector

in a two dimensional complex vector space

for which a particular orthonormal basis,

denoted by {|0〉, |1〉}, has been fixed. It is

important to notice that the basis vector

|0〉 is NOT the zero vector of the vector

space.

• The orthonormal basis |0〉 and |1〉 may cor-

respond to the |↑〉 and |→〉 polarizations of

a photon respectively, or to the polariza-

tions |↗〉 and |↖〉. Or |0〉 and |1〉 could

correspond to the spin-up and spin-down

states (|↑〉 and |↓〉) of an electron.
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• For the purposes of quantum computing,

the basis states |0〉 and |1〉 are taken to

encode the classical bit values 0 and 1 re-

spectively. Unlike classical bits however,

qubits can be in a superposition of |0〉 and

|1〉 such as a|0〉 + b|1〉 where a and b are

complex numbers such that |a|2 + |b|2 = 1.

If such a superposition is measured with re-

spect to the basis {|0〉, |1〉}, the probability

that the measured value is |0〉 is |a|2 and

the probability that the measured value is

|1〉 is |b|2.
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• Key properties of quantum bits:

1. A qubit can be in a superposition state

of 0 and 1.

2. Measurement of a qubit in a superposi-

tion state will yield probabilistic results.

3. Measurement of a qubit changes the state

to the one measured.

4. Qubits cannot be copied exactly. This

is known as the ‘no cloning’ principle.

Interestingly, it is nonetheless possible

to ‘teleport’ a quantum state, but in the

process, the original quantum state is

destroyed . . .
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• If we have available more than one (phys-

ical) qubit, we may be able to entangle

them. The tensor product of the Hilbert

spaces for the individual qubits is the ap-

propriate model for these entangled sys-

tems.

• For example, if we have two qubits with

bases {|0〉1, |1〉1} and {|0〉2, |1〉2} respectively,

the tensor product space has the basis

{|0〉1⊗|0〉2, |0〉1⊗|1〉2, |1〉1⊗|0〉2, |1〉1⊗|1〉2}.

We can (conveniently) denote this basis as

{|00〉, |01〉, |10〉, |11〉}.
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• More generally, if we have n qubits to which

we can apply common measurements, we

will be working in the 2n-dimensional Hilbert

space with basis

{|00 . . .00〉, |00 . . .01〉, . . . , |11 . . .10〉, |11 . . .11〉}

• A typical quantum state for an n-qubit sys-

tem is
2n−1∑
i=0

ai|i〉

where ai ∈ C, and {|i〉} is the basis, with (in

our notation) i written as an n-bit binary

number.
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• A classical (macroscopic) physical object
broken into pieces can be described and
measured as separate components. An n-
particle quantum system cannot always be
described in terms of the states of its com-
ponent pieces. For instance, the state
|00〉+|11〉 cannot be decomposed into sep-
arate states of each of the two qubits. In
other words, we cannot find a1, a2, b1, b2
such that

(a1|0〉+b1|1〉)⊗(a2|0〉+b2|1〉) = |00〉+ |11〉
since

(a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) =

a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉

and a1b2 = 0 implies that either a1a2 = 0
or b1b2 = 0. States which cannot be de-
composed in this way are called entangled
states. These are states that don’t have
classical counterparts, and for which our
intuition is likely to fail.
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• Particles are entangled if a measurement of
one affects a measurement of the other.
For example, the state 1√

2
(|00〉 + |11〉) is

entangled since the probability of measur-
ing the first bit as |0〉 is 1/2 if the second
bit has not been measured. However, if the
second bit has been measured, the proba-
bility that the first bit is measured as |0〉
is either 1 or 0, depending on whether the
second bit was measured as |0〉 or |1〉, re-
spectively. On the other hand, the state
1√
2

(|00〉 + |01〉) is not entangled. Since
1√
2

(|00〉 + |01〉) = |0〉 ⊗ 1√
2

(|0〉 + |1〉), any

measurement of the first bit will yield |0〉
regardless of measurements of the second
bit. Similarly, the second bit has a fifty-
fifty chance of being measured as |0〉 re-
gardless of measurements of the first bit.
Note that entanglement in terms of particle
measurement dependence is equivalent to
the definition of entangled states as states
that cannot be written as a tensor product
of individual states.
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Quantum Computing

• This exponential growth in number of states,

together with the ability to subject the en-

tire space to transformations (either uni-

tary dynamical evolution of the system, or

a measurement projection into an eigen-

vector subspace), provides the foundation

for quantum computing.

• An interesting (apparent) dilemma is the

energetic costs/irreversability of classical

computing. Since unitary transformations

are invertible, quantum computations (ex-

cept measurements) will all be reversible.

The classical boolean operations such as

b1 ∧ b2, b1 ∨ b2, and b1∧∼ b2 are irreversible,

and therefore cannot directly be used as

basic operations for quantum computers.
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• The logical nand-gate (b1∧∼ b2) is sufficient

to generate all the traditional boolean func-

tions (e.g., ∼ b ≡ b ∧∼ b). We will look

for simple quantum gates that are similarly

generic for quantum operations.
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Simple quantum gates

• These are some examples of useful single-
qubit quantum state transformations. Be-
cause of linearity, the transformations are
fully specified by their effect on the ba-
sis vectors. The associated matrix is also
shown.

I : |0〉 → |0〉
|1〉 → |1〉

(
1 0
0 1

)
X : |0〉 → |1〉

|1〉 → |0〉

(
0 1
1 0

)
Y : |0〉 → |1〉

|1〉 → −|0〉

(
0 −1
1 0

)
Z : |0〉 → |0〉

|1〉 → −|1〉

(
1 0
0 −1

)
I is the identity transformation, X is nega-
tion, Z is a phase shift operation, and Y =
ZX is a combination of both. All these
gates are unitary. For example

Y Y ∗ =

(
0 −1
1 0

)(
0 1
−1 0

)
= I.
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• Probably the most important gate is the

controlled-not gate, Cnot, which operates

on two qubits as follows: it changes the

second bit if the first bit is 1 and leaves

the bit unchanged otherwise.

Cnot : |00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The transformation Cnot is unitary since

C∗not = Cnot and CnotCnot = I. The Cnot
gate cannot be decomposed into a tensor

product of two single-bit transformations.
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Tractability of computation

• Creativity and Art

1. Knowing when to pattern

2. Symbol attachment and creation;
patterns/symbols as revealers and
concealers

3. Levels of patterning

• Multiple patterns and selection
(x− 1)(x− 2)(x− 3)− 6
x3 − 6x2 + 11x− 12
(x− 4)(x2 − 2x+ 3)

• Adaptive pattern recognition

• Are the patterns really there?
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Some history

• Physics

• Philosophy (theory of knowledge)

• Mathematics

1. Matrix manipulation

2. Topology

3. Algebra

4. Lie groups

5. Manifolds and relativity theory

6. Algebraic topology
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We have the map bn : Σ2U(n)→ SU(n+ 1)

given by

bn(g, r, s) = [i(g), vn(r, s)]

where i(g) is the inclusion, [g, h] = ghg−1h−1

and

vn(r, s) =



α 0 0 · · · 0 β(−α)0

β(−α)0β α 0 · · · 0 β(−α)1

β(−α)1β β(−α)0β α · · · 0 β(−α)2

... ... ... ... ...

... ... ... . . . ... ...

... ... ... ... ...
β(−α)n−1β β(−α)n−2β · · · · · · α β(−α)n

−(−α)nβ −(−α)n−1β · · · · · · −(−α)0β −(−α)n


where

α = α(r, s) = cos(πr) + i sin(πr) cos(πs)

β = β(r, s) = i sin(πr) sin(πs)
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We have the map
$ b_n: \Sigma^2U(n) \rightarrow SU(n+1) $ \newline
given by
\[ b_n(g, r, s) = \left[ i(g), v_n(r, s) \right] \]
where $i(g)$ is the inclusion,
$\left[g, h\right] = ghg^{-1}h^{-1}$ \newline
and

$ v_n(r,s) = $

\[
\left[ \begin{array}{cccccc}
\alpha & 0 & 0 & \cdots & 0 & \beta (-\overline{\alpha})^0 \\
\beta (-\overline{\alpha})^0\overline{\beta} &

\alpha & 0 & \cdots & 0 &
\beta (-\overline{\alpha})^1 \\

\beta (-\overline{\alpha})^1\overline{\beta} &
\beta (-\overline{\alpha})^0\overline{\beta} &
\alpha & \cdots & 0 & \beta (-\overline{\alpha})^2 \\

\vdots & \vdots & \vdots & & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\beta (-\overline{\alpha})^{n-1}\overline{\beta} &

\beta (-\overline{\alpha})^{n-2}\overline{\beta} &
\cdots & \cdots & \alpha &
\beta (-\overline{\alpha})^n \\

-(-\overline{\alpha})^n\overline{\beta} &
-(-\overline{\alpha})^{n-1}\overline{\beta} &
\cdots & \cdots & -(-\overline{\alpha})^0
\overline{\beta} & -(-\overline{\alpha})^n \\

\end{array} \right]
\]
where
\[ \alpha = \alpha(r,s) =
\cos(\pi r) + i \sin(\pi r)\cos(\pi s) \]
\[ \beta = \beta(r,s) = i \sin(\pi r)\sin(\pi s) \]
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What’s wrong in computing today

• Not enough resolution on displays

• Not enough processing power and memory

• Not enough parallelism

• Software tools are “flat” and sequential

rather than hierarchical
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The intelligent mathematical assistant

• Adaptive symbolic input and output

• Strong basic skills (all of arithmetic

through college calculus and

elementary discrete structures)

• First order logic capabilities

• Adaptive “patterning” and “symboling”

• Elementary hypothesis generation

and testing
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