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This paper reports a “delayed choice quantum eraser” experiment proposed by Scully and Drühl in 1982. The experimental
results demonstrated the possibility of simultaneously observing both particle-like and wave-like behavior of a quantum via
quantum entanglement. The which-path or both-path information of a quantum can be erased or marked by its entangled twin
even after the registration of the quantum.
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Complementarity, perhaps the most basic principle of
quantum mechanics, distinguishes the world of quantum
phenomena from the realm of classical physics. Quantum
mechanically, one can never expect to measure both pre-
cise position and momentum of a quantum at the same
time. It is prohibited. We say that the quantum ob-
servables “position” and “momentum” are “complemen-
tary” because the precise knowledge of the position (mo-
mentum) implies that all possible outcomes of measuring
the momentum (position) are equally probable. In 1927,
Niels Bohr illustrated complementarity with “wave-like”
and “particle-like” attributes of a quantum mechanical
object [1]. Since then, complementarity is often super-
ficially identified with “wave-particle duality of matter”.
Over the years the two-slit interference experiment has
been emphasized as a good example of the enforcement
of complementarity. Feynman, discussing the two-slit
experiment, noted that this wave-particle dual behav-
ior contains the basic mystery of quantum mechanics
[2]. The actual mechanisms that enforce complementar-
ity vary from one experimental situation to another. In
the two-slit experiment, the common “wisdom” is that
the position-momentum uncertainty relation δxδp ≥ h̄

2
makes it impossible to determine which slit the photon
(or electron) passes through without at the same time
disturbing the photon (or electron) enough to destroy
the interference pattern. However, it has been proven [3]
that under certain circumstances this common interpre-
tation may not be true. In 1982, Scully and Drühl found
a way around this position-momentum uncertainty obsta-
cle and proposed a quantum eraser to obtain which-path
or particle-like information without scattering or
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otherwise introducing large uncontrolled phase factors
to disturb the interference. To be sure the interference
pattern disappears when which-path information is ob-
tained. But it reappears when we erase (quantum era-
sure) the which-path information [3,4]. Since 1982, quan-
tum eraser behavior has been reported in several experi-
ments [5]; however, the original scheme has not been fully
demonstrated.

One proposed quantum eraser experiment very close
to the 1982 proposal is illustrated in Fig.1. Two atoms
labeled by A and B are excited by a laser pulse. A pair of
entangled photons, photon 1 and photon 2, is then emit-
ted from either atom A or atom B by atomic cascade
decay. Photon 1, propagating to the right, is registered
by a photon counting detector D0, which can be scanned
by a step motor along its x-axis for the observation of
interference fringes. Photon 2, propagating to the left, is
injected into a beamsplitter. If the pair is generated in
atom A, photon 2 will follow the A path meeting BSA
with 50% chance of being reflected or transmitted. If the
pair is generated in atom B, photon 2 will follow the B
path meeting BSB with 50% chance of being reflected or
transmitted. Under the 50% chance of being transmitted
by either BSA or BSB, photon 2 is detected by either
detector D3 or D4. The registration of D3 or D4 provides
which-path information (path A or path B) of photon 2
and in turn provides which-path information of photon
1 because of the entanglement nature of the two-photon
state of atomic cascade decay. Given a reflection at either
BSA or BSB photon 2 will continue to follow its A path
or B path to meet another 50-50 beamsplitter BS and
then be detected by either detector D1 or D2, which are
placed at the output ports of the beamsplitter BS. The
triggering of detectors D1 or D2 erases the which-path in-
formation. So that either the absence of the interference
or the restoration of the interference can be arranged via
an appropriately contrived photon correlation study. The
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experiment is designed in such a way that L0, the optical
distance between atoms A, B and detector D0, is much
shorter than Li, which is the optical distance between
atoms A, B and detectors D1, D2, D3, and D4, respec-
tively. So that D0 will be triggered much earlier by pho-
ton 1. After the registration of photon 1, we look at these
“delayed” detection events of D1, D2, D3, and D4 which
have constant time delays, τi ≃ (Li − L0)/c, relative to
the triggering time of D0. It is easy to see these “joint de-
tection” events must have resulted from the same photon
pair. It was predicted that the “joint detection” counting
rate R01 (joint detection rate between D0 and D1) and
R02 will show interference pattern when detector D0 is
scanned along its x-axis. This reflects the wave property
(both-path) of photon 1. However, no interference will be
observed in the “joint detection” counting rate R03 and
R04 when detector D0 is scanned along its x-axis. This
is clearly expected because we now have indicated the
particle property (which-path) of photon 1. It is impor-
tant to emphasize that all four “joint detection” rates
R01, R02, R03, and R04 are recorded at the same time
during one scanning of D0 along its y-axis. That is, in
the present experiment we “see” both wave (interference)
and which-path (particle-like) with the same apparatus.

We wish to report a realization of the above quantum
eraser experiment. The schematic diagram of the experi-
mental setup is shown in Fig.2. Instead of atomic cascade
decay, spontaneous parametric down conversion (SPDC)
is used to prepare the entangled two-photon state. SPDC
is a spontaneous nonlinear optical process from which a
pair of signal-idler photons is generated when a pump
laser beam is incident onto a nonlinear optical crystal
[6]. In this experiment, the 351.1nm Argon ion pump
laser beam is divided by a double-slit and incident onto a
type-II phase matching [7] nonlinear optical crystal BBO
(β−BaB2O4) at two regions A and B. A pair of 702.2nm
orthogonally polarized signal-idler photon is generated ei-
ther from A or B region. The width of the SPDC region
is about 0.3mm and the distance between the center of
A and B is about 0.7mm. A Glen-Thompson prism is
used to split the orthogonally polarized signal and idler.
The signal photon (photon 1, either from A or B) passes
a lens LS to meet detector D0, which is placed on the
Fourier transform plane (focal plane for collimated light
beam) of the lens. The use of lens LS is to achieve the
“far field” condition, but still keep a short distance be-
tween the slit and the detector D0. Detector D0 can be
scanned along its x-axis by a step motor. The idler pho-
ton (photon 2) is sent to an interferometer with equal-
path optical arms. The interferometer includes a prism
PS, two 50-50 beamsplitters BSA, BSB, two reflecting
mirrors MA, MB, and a 50-50 beamsplitter BS. Detec-
tors D1 and D2 are placed at the two output ports of
the BS, respectively, for erasing the which-path infor-
mation. The triggering of detectors D3 and D4 provide
which-path information of the idler (photon 2) and in
turn provide which-path information of the signal (pho-
ton 1). The electronic output pulses of detectors D1, D2,

D3, and D4 are sent to coincidence circuits with the out-
put pulse of detector D0, respectively, for the counting
of “joint detection” rates R01, R02, R03, and R04. In
this experiment the optical delay (Li − L0) is chosen to
be ≃ 2.5m, where L0 is the optical distance between the
output surface of BBO and detector D0, and Li is the
optical distance between the output surface of the BBO
and detectors D1, D2, D3, and D4, respectively. This
means that any information one can learn from photon
2 must be at least 8ns later than what one has learned
from the registration of photon 1. Compared to the 1ns
response time of the detectors, 2.5m delay is good enough
for a “delayed erasure”.

Figs.3, 4, and 5 report the experimental results, which
are all consistent with prediction. Figs.3 and 4 show the
“joint detection” rates R01 and R02 against the x coor-
dinates of detector D0. It is clear we have observed the
standard Young’s double-slit interference pattern. How-
ever, there is a π phase shift between the two interference
fringes. The π phase shift is explained as follows. Fig.5
reports a typical R03 (R04), “joint detection” counting
rate between D0 and “which-path” D3 (D4), against the
x coordinates of detector D0. An absence of interference
is clearly demonstrated. There is no significant difference
between the curves of R03 and R04 except the small shift
of the center.

To explain the experimental results, a standard quan-
tum mechanical calculation is presented in the following.
The “joint detection” counting rate, R0i, of detector D0

and detector Dj , on the time interval T , is given by the
Glauber formula [8]:

R0j ∝
1

T

∫ T

0

∫ T

0

dT0dTj〈Ψ|E
(−)
0 E

(−)
j E

(+)
j E

(+)
0 |Ψ〉

=
1

T

∫ T

0

∫ T

0

dT0dTj |〈0|E
(+)
j E

(+)
0 |Ψ〉|2, (1)

where T0 is the detection time of D0, Tj is the detec-

tion time of Dj( j = 1, 2, 3, 4) and E
(±)
0,j are positive and

negative-frequency components of the field at detectors
D0 and Dj, respectively. |Ψ〉 is the entangled state of
SPDC,

|Ψ〉 =
∑

s,i

C(ks,ki) a†
s(ω(ks)) a†

i (ω(ki))|0〉, (2)

where C(ks,ki) = δ(ωs + ωi − ωp)δ(ks + ki − kp), for
the SPDC in which ωj and kj (j = s, i, p) are the fre-
quency and wavevectors of the signal (s), idler (i), and
pump (p), respectively, ωp and kp can be considered as
constants, a single mode laser line is used for pump and

a†
s and a†

i are creation operators for signal and idler pho-
tons, respectively. For the case of two scattering atoms,
see ref. [3], and in the case of cascade radiation, see ref.
[9], C(ks,ki) has a similar structure but without the mo-
mentum delta function. The δ functions in eq.(2) are the
results of approximations for an infinite size SPDC crys-
tal and for infinite interaction time. We introduce the
two-dimensional function Ψ(t0, tj) as in eq.(1),
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Ψ(t0, tj) ≡ 〈0|E
(+)
j E

(+)
0 |Ψ〉. (3)

Ψ(t0, tj) is the joint count probability amplitude (“wave-
function” for short), where t0 ≡ T0 − L0/c, tj ≡ Tj −
Lj/c, j = 1, 2, 3, 4, L0 (Lj) is the optical distance be-
tween the output point on the BBO crystal and D0 (Dj).
It is straightforward to see that the four “wavefunctions”
Ψ(t0, tj), correspond to four different “joint detection”
measurements, having the following different forms:

Ψ(t0, t1) = A(t0, t
A
1 ) + A(t0, t

B
1 ),

Ψ(t0, t2) = A(t0, t
A
2 ) − A(t0, t

B
2 ), (4)

Ψ(t0, t3) = A(t0, t
A
3 ), Ψ(t0, t4) = A(t0, t

B
4 ), (5)

where as in Fig.1 the upper index of t (A or B) labels the
scattering crystal (A or B region) and the lower index of t
indicates different detectors. The different sign between
the two amplitudes Ψ(t0, t1) and Ψ(t0, t2) is caused by
the transmission-reflection unitary transformation of the
beamsplitter BS, see Fig.1 and Fig.2. It is also straight-
forward to calculate each of the A(ti, tj) [10]. To sim-
plify the calculations, we consider the longitudinal inte-
gral only and write the two-photon state in terms of the
integral of ke and ko:

|Ψ〉 = A
′

0

∫

dke

∫

dko δ(ωe + ωo − ωp) ×

Φ(∆kL)a†
ke

a†
ko
|0〉, (6)

where a type-II phase matching crystal with finite length
of L is assumed. Φ(∆kL) is a sinc-like function,
Φ(∆kL) = (ei(∆kL) − 1)/i(∆kL). Using eqs. (3) and
(6) we find,

A(ti, tj) = A0

∫

dke

∫

dkoδ(ωe + ωo − ωp) ×

Φ(∆kL)fi(ωe)fj(ωo)e
−i(ωete

1
+ωoto

2
), (7)

where fi,j(ω), is the spectral transmission function of an
assumed filter placed in front of the kth detector and is
assumed Gaussian to simplify the calculation. To com-
plete the integral, we define ωe = Ωe+ν and ωo = Ωo−ν,
where Ωe and Ωo are the center frequencies of the SPDC,
Ωe + Ωo = Ωp and ν is a small tuning frequency, so that
ωe + ωo = Ωp still holds. Consequently, we can expand
ke and ko around Ke(Ωe) and Ko(Ωo) to first order in ν:

ke = Ke + ν
dωe

dke

∣

∣

∣

∣

Ωe

= Ke +
ν

ue

,

ko = Ko − ν
dωo

dko

∣

∣

∣

∣

Ωo

= Ko −
ν

uo

, (8)

where ue and uo are recognized as the group velocities
of the e-ray and o-ray at frequencies Ωe and Ωo, respec-
tively. Completing the integral, the biphoton wavepacket
of type-II SPDC is thus:

A(ti, tj) = A0Π(ti − tj)e
−iΩitie−iΩjtj , (9)

where we have dropped the e, o indices. The shape of
Π(t1−t2) is determined by the bandwidth of the spectral
filters and the parameter DL of the SPDC crystal, where
D ≡ 1/uo − 1/ue. If the filters are removed or have large
enough bandwidth, we have a rectangular pulse function
Π(t1 − t2).

Π(t0 − tj) =

{

1 if 0 ≤ t0 − tj ≤ DL,
0 otherwise.

It is easy to find that the two amplitudes in Ψ(t0, t1) and
Ψ(t0, t2) are indistinguishable (overlap in both t0−tj and
t0 + tj), respectively, so that interference is expected in
both the coincidence counting rates, R01 and R02; how-
ever, with a π phase shift due to the different sign,

R01 ∝ cos2(xπd/λf), and R02 ∝ sin2(xπd/λf).

If we consider “slit” A and B both have finite width (not
infinitely narrow), an integral is necessary to sum all pos-
sible amplitudes along slit A and slit B. We will have a
standard interference-diffraction pattern for R01 and R02,

R01 ∝ sinc2(xπa/λf) cos2(xπd/λf),

R02 ∝ sinc2(xπa/λf) sin2(xπd/λf), (10)

where a is the width of the slit A and B (equal width),
d is the distance between the center of slit A and B,
λ = λs = λi is the wavelength of the signal and idler, and
f is the focal length of lens LS. We have also applied the
“far field approximation” for the signal and equal optical
distance of the interferometer for the idler. After consid-
ering the finite size of the detectors and the divergence
of the pump beam for further integrals, the interference
visibility is reduced to the level close to the observation.

For the “joint detection” R03 and R04, it is seen
that the “wavefunction” in eq.(5) (which clearly provides
“which-path” information) has only one amplitude and
no interference is expected.

In conclusion, we have realized a quantum eraser ex-
periment of the type proposed in ref. [3]. The experimen-
tal results demonstrate the possibility of observing both
particle-like and wave-like behavior of a light quantum
via quantum mechanical entanglement. The which-path
or both-path information of a quantum can be erased or
marked by its entangled twin even after the registration
of the quantum.
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FIG. 1. A proposed quantum eraser experiment. A pair
of entangled photons is emitted from either atom A or atom
B by atomic cascade decay. “Clicks” at D3 or D4 provide
which-path information and “clicks” at D1 or D2 erase the
which-path information.
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FIG. 2. Schematic of the experimental setup. The pump
laser beam of SPDC is divided by a double-slit and incident
onto a BBO crystal at two regions A and B. A pair of sig-
nal-idler photons is generated either from A or B region. The
detection time of the signal photon is 8ns earlier than that of
the idler.
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FIG. 3. R01 (“joint detection” rate between detectors D0

and D1) against the x coordinates of detector D0. A standard
Young’s double-slit interference pattern is observed.
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FIG. 4. R02 (“joint detection” rate between detectors D0

and D2) Note, there is a π phase shift compare to R01 shown
in Fig.3
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FIG. 5. R03 (“joint detection” rate between detectors D0

and D3). An absence of interference is clearly demonstrated.
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