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Some random (variable)
background ←

This is a brief tour (peripatetic – wandering
about) of some topics in random walks. It
mostly consists of a few interesting ideas to
start exploration of the general topic. We’ll
start with a bit on random variables.

• A random variable is a view into a set of
possible values. Associated with each
possible value is a probability. For a
discrete random variable, there is a finite
or countably infinite set of possible values
and probabilities {(ai, pi)}, with the
condition that

∑
i pi = 1. Thus, for

example, we could talk about the random
variable ξ drawing values from the set of
possible values {(1,1/2), (−1,1/2)}.
When we evaluate the random variable ξ,
we get either 1 or -1, each with
probability 1/2.
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• We can build new random variables. For

example, if ξ1 and ξ2 are random variables

over {(1,1/2), (−1,1/2)}, then ξ1 + ξ2 is a

random variable (but over the set

{(2,1/4), (0,1/2), (−2,1/4)}). We must

be a bit careful sometimes – for example,

ξ1 + ξ1 is also a random variable (but this

time over {(2,1/2), (−2,1/2)}).

• Given a random variable X over {(ai, pi)},
we define the expectation (or expected

value) of X by:

〈X〉 =
∑
i

piai.

Note that the expectation is a linear

operator:

〈αX + βY 〉 = α〈X〉+ β〈Y 〉

for α, β real numbers, and X,Y random

variables.
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• Note that the expectation of a constant α

is that constant (a constant can be

thought of as a random variable over

{(α,1)}):

〈α〉 = α.

• Example: if ξ1 and ξ2 are random

variables over {(1,1/2), (−1,1/2)}, then

〈ξ1〉 =
1

2
∗ 1 +

1

2
∗ (−1) = 0 = 〈ξ2〉,

〈ξ1 + ξ2〉 = 〈ξ1〉+ 〈ξ2〉 = 0 + 0 = 0,

〈ξ1ξ2〉 =
1

2
∗ 1 +

1

2
∗ (−1) = 0,

but

〈ξ 2
1 〉 =

1

2
∗ 12 +

1

2
∗ (−1)2 = 1,

and

〈(ξ1 + ξ2)2〉 = 〈ξ 2
1 + 2 ∗ ξ1ξ2 + ξ 2

2 〉
= 〈ξ 2

1 〉+ 2 ∗ 〈ξ1ξ2〉+ 〈ξ 2
2 〉

= 1 + 0 + 1

= 2.
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• Given a random variable X, we define the

variance of X by:

V (X) = 〈(X − 〈X〉)2〉.

We can also calculate this as:

V (X) = 〈(X − 〈X〉)2〉
= 〈X2 − 2X〈X〉+ 〈X〉2〉
= 〈X2〉 − 2〈X〈X〉〉+ 〈〈X〉2〉
= 〈X2〉 − 2〈X〉2 + 〈X〉2

= 〈X2〉 − 〈X〉2.

• The standard deviation of a random

variable X is given by:

σ(X) = V (X)1/2.
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What is a random walk?←

There are a variety of ways to define a

random walk. Here we start with a relatively

simple version, which will allow us to develop

some classical results on random walks.

Later, we can generalize.

• Let {ξi|i = 1,2,3, . . .} be a set of

(independent) random variables over

{(1, 1
2), (−1, 1

2)} (in particular, ‘observing’

one of the random variables has no effect

on observations of any of the rest of

them). Then a simple random walk is a

sequence (Sn) where

S0 = 0,

Sn = ξ1 + ξ2 + . . .+ ξn.

• It is easy to see that

−n ≤ Sn ≤ n.
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• We have that

〈S0〉 = 0,

and thus

〈Sn〉 = 〈Sn−1 + ξn〉
= 〈Sn−1〉+ 〈ξn〉
= 〈Sn−1〉+ 0

= 〈Sn−1〉
= 〈Sn−2〉
...

= 〈S0〉
= 0.
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• We also have

〈S 2
n 〉 = 〈(Sn−1 + ξn) 2〉

= 〈S 2
n−1 + 2 ∗ Sn−1ξn + ξ 2

n 〉
= 〈S 2

n−1〉+ 2 ∗ 〈Sn−1ξn〉+ 〈ξ 2
n 〉

= 〈S 2
n−1〉+ 2 ∗

n−1∑
i=1

〈ξiξn〉+ 1

= 〈S 2
n−1〉+ 2 ∗

n−1∑
i=1

0 + 1

= 〈S 2
n−1〉+ 1

= 〈S 2
n−2〉+ 2

...

= 〈S 2
0 〉+ n

= n,

and thus

V (Sn) = 〈S 2
n 〉 − 〈Sn〉2

= n− 0

= n.

In other words, the variance of Sn is n,
and the standard deviation of Sn is

√
n.
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• We know that Sn ranges between −n and

n. But how is it distributed across that

range? In other words, if −n ≤ k ≤ n,

what is the probability that Sn = k (i.e.,

P (Sn = k))? We can make a couple of

observations. First, by symmetry,

P (Sn = k) = P (Sn = −k), since each of

the ξi is over {(1, 1
2), (−1, 1

2)}. Second, by

a parity argument, if n is even and k is

odd, or if n is odd and k is even, then

P (Sn = k) = 0. Let us look, then, at the

case n is even and k ≥ 0 is also even.

We know that Sn =
∑
i ξi, and that each

of the ξi is either -1 or 1. Thus, Sn = k

when exactly (n2 + k
2) of the ξi are +1 and

the rest (i.e., n− (n2 + k
2) = (n2 −

k
2)) are

-1. This can happen in
(

n
n
2+k

2

)
different

ways. Each of these is equally likely, and

there are 2n total possibilities.
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Thus, we have that

P (Sn = k) =
( n
n
2 + k

2

) 1

2n

=
n!

(n2 + k
2)! (n− (n2 + k

2))! 2n

=
n!

(n+k
2 )! (n−k2 )! 2n

We can also do the quick consistency

check:
n∑

k=−n
P (Sn = k)

= P (Sn = 0) + 2
n∑

k=1

P (Sn = k)

= P (Sn = 0) + 2
n/2∑
k=1

P (Sn = 2k)

= P (Sn = 0) + 2
n/2∑
k=1

( n
n
2 + 2k

2

) 1

2n
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= P (Sn = 0) +
1

2n
2
n/2∑
k=1

( n
n
2 + k

)

=
1

2n

(n
n
2

)
+

1

2n
2
n/2∑
k=1

( n
n
2 + k

)

=
1

2n

(nn
2

)
+

n/2∑
k=1

( n
n
2 + k

)
+

n/2∑
k=1

( n
n
2 + k

)
=

1

2n

(nn
2

)
+

n/2∑
k=1

( n

n− (n2 + k)

)
+

n/2∑
k=1

( n
n
2 + k

)
=

1

2n

(nn
2

)
+

n/2−1∑
k=0

(n
k

)
+

n∑
k=n/2+1

(n
k

)
=

1

2n

 n∑
k=0

(n
k

)
=

1

2n
∗ 2n

= 1.

(ugh . . . :-)
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• Let’s generalize slightly, and suppose that

our random walk may have unequal

probabilities of moving in the two

directions. In other words, suppose our

random variables ξi are over

{(1, p), (−1, q)}, with q = 1− p.

In this case, given two such random

variables ξ1 and ξ2, we have:

〈ξ1〉 = p ∗ 1 + q ∗ (−1) = p− q
= 2p− 1 = 〈ξ2〉,

〈ξ1 + ξ2〉 = 〈ξ1〉+ 〈ξ2〉 = 2 ∗ (2p− 1)

= 4p− 2,

〈ξ1ξ2〉 = (p2 + q2) ∗ 1 + 2pq ∗ (−1)

= p2 − 2pq + q2 = (p− q)2

= (2p− 1)2 = 4p2 − 4p+ 1.
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We also have:

〈ξ 2
1 〉 = p ∗ 12 + q ∗ (−1)2 = p+ q = 1,

and

〈(ξ1 + ξ2)2〉 = 〈ξ 2
1 + 2 ∗ ξ1ξ2 + ξ 2

2 〉
= 〈ξ 2

1 〉+ 2 ∗ 〈ξ1ξ2〉+ 〈ξ 2
2 〉

= 1 + 2 ∗ (p− q)2 + 1

= 2 + 2 ∗ (p− q)2

= 2 + 2 ∗ (4p2 − 4p+ 1)

= 2 + 8p2 − 8p+ 2

= 4 + 8p2 − 8p.
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• If we again let S0 = 0 and

Sn = S0 + ξ1 + . . . ξn, we have that

〈S0〉 = 0,

and in general

〈Sn〉 = 〈Sn−1 + ξn〉
= 〈Sn−1〉+ 〈ξn〉
= 〈Sn−1〉+ p− q
= 〈Sn−2〉+ 〈ξn−1〉+ p− q
= 〈Sn−2〉+ 2 ∗ (p− q)
...

= 〈S0〉+ n ∗ (p− q)
= n ∗ (p− q).
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• We also have

〈S 2
n 〉 = 〈(Sn−1 + ξn) 2〉

= 〈S 2
n−1 + 2 ∗ Sn−1ξn + ξ 2

n 〉
= 〈S 2

n−1〉+ 2 ∗ 〈Sn−1ξn〉+ 〈ξ 2
n 〉

= 〈S 2
n−1〉+ 2 ∗

n−1∑
i=1

〈ξiξn〉+ 1

= 〈S 2
n−1〉+ 2 ∗

n−1∑
i=1

(p− q)2 + 1

= 〈S 2
n−1〉+ 2(n− 1)(p− q)2 + 1

= 〈S 2
n−2〉+ 2((n− 1) + (n− 2))(p− q)2 + 2

...

= 〈S 2
0 〉+ 2

n−1∑
i=1

i

 (p− q)2 + n

= 0 + n(n− 1)(p− q)2 + n

= n+ n(n− 1)(p− q)2,
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and thus

V (Sn) = 〈S 2
n 〉 − 〈Sn〉2

= n+ n(n− 1)(p− q)2 − n2 ∗ (p− q)2

= n− n(p− q)2

= n(p+ q)2 − n(p− q)2

= n((p+ q)2 − (p− q)2)

= n(4pq)

= 4npq.

In other words, the variance of Sn is 4npq,

and the standard deviation of Sn is 2
√
npq.
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Some Intuitive Derivations
←

Every so often, I like to be a physicist (or
biologist) and cavalier about error bounds.

• Suppose Sn =
∑
i ξi is a random walk, with

ξi random variables over {(1, 1
2), (−1, 1

2)}.
Let us write P (Sn = k) as P (k, n).

We can observe that

P (k, n+ 1) =
1

2
P (k − 1, n) +

1

2
P (k + 1, n).

Now assume that n and k are large, let δ
and τ be (small) real numbers, and then
let x = δk and t = τn.

We then have P (x, t) = P (δk, τn), and so

P (x, t+ τ) = P (δk, τ(n+ 1))

=
1

2
P (δ(k − 1), τn) +

1

2
P (δ(k + 1), τn)

=
1

2
P (x− δ, t) +

1

2
P (x+ δ, t).
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From this, we get

P (x, t+ τ)− P (x, t)

=
1

2
(P (x− δ, t) + P (x+ δ, t)− 2P (x, t)).

Now consider two approximations. First,

for small (infinitesimal) τ , we have

P (x, t+ τ) = P (x, t) + τ ∗
∂P (x, t)

∂t
,

and for small (infinitesimal) δ, we have

P (x+ δ, t) + P (x− δ, t)

= 2P (x, t) + δ2 ∗
∂2P (x, t)

∂x2
.

Putting pieces together, we have:

∂P (x, t)

∂t
=

δ2

2τ

∂2P (x, t)

∂x2

= D ∗
∂2P (x, t)

∂x2

(i.e., the diffusion equation, with D = δ2

2τ
the diffusion coefficient . . . ).
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More generally, if we have a biased
random walk (over {(1, p), (−1, q)}), then

P (x, t+ τ) = p ∗ P (x− δ, t) + q ∗ P (x+ δ, t),

and, using the approximations, we have

τ ∗
∂P (x, t)

∂t

= P (x, t+ τ)− P (x, t)

= p ∗ P (x− δ, t) + q ∗ P (x+ δ, t)− P (x, t)

= p ∗
(
P (x, t)− δ ∗

∂P (x, t)

∂x
+
δ2

2
∗
∂2P (x, t)

∂x2

)

+q ∗
(
P (x, t) + δ ∗

∂P (x, t)

∂x
+
δ2

2
∗
∂2P (x, t)

∂x2

)

−P (x, t)

= (p+ q − 1)P (x, t) + (q − p) ∗ δ ∗
∂P (x, t)

∂x

+
(p+ q)δ2

2
∗
∂2P (x, t)

∂x2

= (q − p) ∗ δ ∗
∂P (x, t)

∂x
+
δ2

2
∗
∂2P (x, t)

∂x2
.
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Writing this in a slightly different form,

we have

∂P (x, t)

∂t
= D ∗

∂2P (x, t)

∂x2
+D ∗ β ∗

∂P (x, t)

∂x
,

where

D =
δ2

2τ
and β =

2(1− 2p)

δ

(i.e., diffusion with drift . . . ).
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• Let’s look at another approach to

continuous versions of these issues.

Instead of looking at random variables

over a discrete set, let the random

variables draw their values from a

probability distribution. In particular, let

w : < → [0,1]

be an integrable (measurable) function,

with ∫ ∞
−∞

w(s)ds = 1.

Then a random variable ξ over w(s) gives

the value s with probability w(s) (i.e.,

P (ξ = s) = w(s)).

Note that we can use the Dirac delta

function δ(x− x0) to recover the discrete

examples if we want to.
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Recall that the Dirac delta function has

the properties

δ(x− x0)dx = 0 if |x− x0| >
dx

2

δ(x− x0)dx = 1 if |x− x0| ≤
dx

2
and ∫ ∞

−∞
δ(x− x0)dx = 1.

Then, if we let

w(x) =
∑
i

pi ∗ δ(x− ai),

we are back in the discrete case.

Let’s mention here also that the delta

function has the property:

δ(x− x0) =
1

2π

∫ ∞
−∞

eit(x0−x)dt.
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Given a random variable ξ over a
probability distribution w(s), we can look
at the expected value of the random
variable

〈ξ〉 =
∫ ∞
−∞

s ∗ w(s)ds,

the mean square

〈ξ2〉 =
∫ ∞
−∞

s2 ∗ w(s)ds,

the variance

V (ξ) = 〈ξ2〉 − 〈ξ〉2,

and so on.

Now suppose we have a probability
distribution w(s) with mean µ and
standard deviation σ (i.e., if ξ is a random
variable over w(s), then µ = 〈ξ〉, and
σ2 = V (ξ)). Note that there is no
guarantee for a given distribution w(s)
that either the mean µ or standard
deviation σ exist – the integrals could
diverge. In this example, we are assuming
they do exist.
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Let {ξi} be a collection of (independent)

random variables over the distribution

w(s), and let Sn = S0 +
∑n

1 ξi (with

S0 = 0) be a random walk. What can we

say about the distribution of the values of
1
nSn? In other words, what can we say

about the distribution of the average of n

(identically distributed) random variables?

We want to find the probability that
1
nSn = x (let’s write this as Pn(x)). We

will have 1
nSn = x if ξi = si and 1

n

∑
i si = x.

The probability of this happening is∏
iw(si), since the ξi are independent of

each other. We need to add up the

probabilities over all possible ways that
1
n

∑
i si = x (as we did in the discrete

case). In other words, we will have

Pn(x) =
∫ ∫
· · ·

∫
1
n

∑
i si=x

w(s1) · · ·w(sn)ds1 · · · dsn.

The limits of integration are fairly messy,

so we will use the Dirac delta function.
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We will then have

Pn(x)

=
∫ ∞
−∞
· · ·

∫ ∞
−∞

δ(x−
1

n

∑
j

sj)w(s1) · · ·w(sn)ds1 · · · dsn.

Using the (fourier transform) property of

the delta function, we have

2πPn(x)

=
∫ ∞
−∞

...
∫ ∞
−∞

e
it(1

n

∑
j sj−x)

w(s1)...w(sn)dtds1...dsn

=
∫ ∞
−∞
· · ·

∫ ∞
−∞

e−itx
∏
j

(eit
sj
nw(sj))dtds1 · · · dsn

=
∫ ∞
−∞

e−itx
∏
j

∫ ∞
−∞

(eit
sj
nw(sj))dsj

 dt.
If we now let Q(t) =

∫∞
−∞ e

its
n w(s)ds, we

have

Pn(x) =
1

2π

∫ ∞
−∞

e−itxQn(t)dt.
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Now let’s look at Q(t). We can expand
the exponential to get

Q(t) =
∫ ∞
−∞

e
its
n w(s)ds

=
∫ ∞
−∞

w(s)(1 +
its

n
−

1

2

t2s2

n2
· · · )ds

=
∫ ∞
−∞

w(s)ds+
it

n

∫ ∞
−∞

s ∗ w(s)ds

−
t2

2n2

∫ ∞
−∞

s2w(s)ds+ · · ·

= 1 +
it

n
〈s〉 −

1

2n2
t2〈s2〉+ · · ·

Now we take the log, and use the
expansion ln(1 + y) = y − 1

2y
2 + · · · to get

ln(Qn(t)) = n ln(1 +
it

n
〈s〉 −

t2

2n2
〈s2〉+ · · · )

= n ∗ (
it

n
〈s〉 −

1

2n2
t2〈s2〉 −

1

2
(
it

n
〈s〉)2 + · · · )

= (it〈s〉 −
1

2n
t2(〈s2〉 − 〈s〉2) + · · · )

= (itµ−
1

2n
t2σ2 + · · · )

where µ and σ are the mean and standard
deviation of the distribution w(s).

27



Discarding all the higher order terms, and
taking antilogs, we get

Qn(t) = eitµ−
1

2nt
2σ2

,

and then that

Pn(x) =
1

2π

∫ ∞
−∞

eit(µ−x)− 1
2nt

2σ2
dt.

Now we use the formula∫ ∞
−∞

eat−bt
2
dt =

√
π

b
∗ e
(
a2
4b

)
with a = i(µ− x), b = 1

2nσ
2, to finally get

Pn(x) =
1

2π

∫ ∞
−∞

eit(µ−x)− 1
2nt

2σ2
dt

=
1

2π

√
π

1
2nσ

2
∗ e

(
− (µ−x)2

4∗ 1
2nσ

2

)

=
1

σ√
n

√
2π
∗ e

−(x−µ)2

2
(
σ2
n

)
.

In other words, it is a normal distribution
with mean µ and standard deviation σ√

n
.
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Note that we made no assumptions about

the distribution w(s) except that it

actually has a mean (µ) and a standard

deviation (σ) (and, of course, that it goes

to zero fast enough for large |s| that the

approximations work out right . . . ).

What this says is that if we average a

bunch of identically distributed

independent random variables, the result

is a normal distribution, whether or not

the original distribution was normal.

This is usually called the Central Limit

Theorem.
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Financial Modeling ←

Let’s use some of these ideas to do some

financial modeling. As an example, let’s

develop the (in)famous Black-Scholes model

for options pricing.

• We can start with the simplest financial

instrument, the fixed rate bond. If we

“buy” amount V0 of a rate r bond at time

t = 0, then at time t = 1 we can redeem

the for value V0(1 + r). If we wait longer

to redeem the bond, then at some time in

the future we can redeem the bond for

V (n, r) = V0(1 + r)n

One can also think of this as a “savings

account” with interest rate r. In this

case, we can ask the more general

question, what is V (t, r) for real values of

t, rather than just integral values of t?
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This will depend on the specifics of the
bond (savings account). In its simplest
form, the bond will have “coupons” that
can be redeemed at specific times in the
future, or in the case of a savings
account, interest will be “compounded”
on specific dates.

Let’s look at various possibilities for
compounding. Suppose the bond has
(annual) interest rate r. If interest is
compounded k times during the year (k
would be 4 for quarterly compounding, 12
for monthly compounding, etc.), then the
value at time t would be

V (t, r, k) = V0(1 +
r

k
)kt

If we smooth this out, and let k go to
infinity (i.e., “continuous compounding”),
then we will have

V (t, r) = V0 lim
k→∞

((1 +
r

k
)kt) = V0e

rt.

We thus know how to set a price for a
bond to be redeemed at some time t in
the future.
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• Now let’s generalize. Suppose that the

interest rate r, instead of being fixed,

varied over time. What price should we

be willing to pay for such a financial

instrument? We can think of this financial

instrument as a stock (share) in a

corporation. Our “return on investment”

will be uncertain, and will depend on the

performance of the corporation (and also

on the change in price of the stock). We

have the potential to make a large profit

(if the price of the stock goes up), but we

now also have the potential to lose money

(if the price of the stock goes down).

There is a difficulty here in that we don’t

really have the flexibility to buy the stock

at whatever price we want today

(depending on our calculation of the

future value of the stock), but can only

buy at today’s price.

One thing we can do (at least potentially,

assuming there are sellers willing), is to
32



purchase an “option” to buy the stock at

some fixed price at some specific time in

the future. Let’s simplify things a bit, and

assume that over the time period in

question, the stock will not pay any

dividends (in other words, our profit/loss

will only depend on changes in the price

of the stock).

Once a market in “options” is developed,

a variety of things become possible. Not

only can we purchase options to buy a

stock at a given price at a given time in

the future (a “call” option), but we can

also purchase an option to sell a stock at

a given price at a given time in the future

(a “put” option). Note that an option

protects us against an adverse change in

the price of the stock. For example, if we

purchase a “call” option, and the price of

the stock goes down, we let the option

expire, and we lose only the amount we

paid for the option (the premium). We
33



are thus protected against large losses.
More generally, if we buy both “put” and
“call” options, we can “hedge” our bets,
and (we believe) protect ourselves against
large losses, at the price of limiting the
amount of gain we might make.

Our task, then, is to develop a model
that will allow us to determine
(estimate?) the price we should be willing
to pay for an option.

In order to develop our model, we will
have to make a variety of assumptions,
many of them “simplifying” assumptions.
It is possible (likely?) that at least some
or our assumptions will be unrealistic, but
at least will allow us to do computations.
This presents us with an interesting
dilemma – if our model is unrealistic, we
may make very bad decisions if we depend
on the model, but, if we make the model
“realistic,” it may be useless to us
because we can’t do the computations.
Apparently, such is life . . .
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• For this example, we’re going to develop

(a version of) the Black-Scholes option

pricing model.

We’ll have to make a variety of

assumptions. These will include:

1. There is a completely safe (e.g.,

“FDIC insured savings account”) fixed

rate asset available.

2. There are “frictionless” markets (i.e.,

we can buy or sell any instrument at

any time in any amount).

3. There are no transaction costs.

4. No “arbitrage” (there are no financial

instruments that provide “risk free”

profits above the fixed rate asset).
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The most critical assumptions we will
have to make concern the form of
variability of the “price” of the stock on
which we will be buying our options.

1. Variability is continuous (and possibly
even smooth?). This will allow us to
work in continuous time.

2. The distribution is “stable” (i.e., the
distribution of the variability does not
change over time).

3. Increments are independent (i.e.,
variability does not depend on history –
there is no “memory” in the
distribution).

4. The distribution has a finite mean and
finite variance.

5. Variability is “independent of price”
(i.e., the “value” of a change in price
does not depend on the specific
current price).
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Putting all of this together, we will

assume that the stock price x(t) gives us

a continuous random variable

R(x, t) = ln

(
x(t)

x(0)

)
.

This random variable R(x, t) will be the

return on the stock at time t, associated

with stock price x(t). More specifically,

we will assume that the price x(t) satisfies

the stochastic differential equation

dx(t) = µx(t) dt+ σx(t) dBt

where Bt is Brownian motion, µ is the

“drift,” and σ is the volatility. This is

generally called geometric Brownian

motion. This equation has the solution

x(t) = x(0)e

((
µ−σ

2
2

)
t+σBt

)
,

which is a log-normally distributed

random variable with expected value

〈x(t)〉 = x(0)eµt, and variance

Var(x(t)) = x(0)2e2µt
(
eσ

2t − 1
)
.
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The random variable R(x, t) is normally

distributed, with mean (µ− σ2/2)t and

variance σ2t.

We are interested in determining the

current value of a financial instrument

that will have a value in the future that

depends on the price x(t) (or return

R(x(t), t)) of the underlying asset (stock).

Let us call the value of this derived

instrument w(x, t). In the Black-Scholes

case, w(x, t) will be the value of a “call’

option.

To understand this better, we will study

“portfolios” of various financial

instruments. So, suppose we form a

portfolio by putting one unit of our money

into the secure interest bearing asset, and

an amount −1/w1 (where w1 = (∂w/∂x))

in a “call” option with strike price K at

time T (i.e., at time T we can buy the

stock a price K). Then the value of the

portfolio will be p = x− w/w1.
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During a short period of time ∆t, the
value of the portfolio will change by
∆p = ∆x−∆w/w1. We want to expand
this formula, and fortunately there is a
nice method (part of the Ito calculus)
that allows us to write

∆w =
∂w

∂x
∆x+

1

2
σ2x2 ∂

2w

∂x∂t
∆t+

∂w

∂t
∆t

(this is essentially the chain rule for
stochastic differentials).

We then have

∆p = −
1

w1

(
1

2
σ2x2w11 + w2

)
∆t

(where w1, w11, and w2 are the
appropriate partial derivatives, and σ2 is a
constant depending on w, essentially its
variance or volatility).

Now we will use the “no arbitrage”
assumption. Since ∆p is an assured
return, it must be that

∆p = rp∆t = r

(
x−

w

w1

)
∆t.
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If we equate these two expressions for

∆p, we get

−
1

w1

(
1

2
σ2x2w11 + w2

)
∆t = r

(
x−

w

w1

)
∆t.

Dividing through by ∆t, we can simplify

to

w2 + rxw1 +
1

2
σ2x2w11 − rw = 0.

This is the Black-Scholes differential

equation (B-S PDE) for w(x, t). It has

boundary conditions:

1. w(0, t) = 0 for all t.

2. w(x, t) ∼ x as t→∞.

3. w(x, T ) = max(x−K,0) (recall K is

the strike price at time T ).
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• Our next task is to develop a solution to
the B-S equation. We’ll start by making
some changes of variables. We’ll reverse
the order of time (with some
normalization), since the “no arbitrage”
rule allows us to use t = T for a boundary
condition. We’ll also move into a
“logarithmic” mode (since the riskless
asset grows exponentially), and normalize
with respect to K (the strike price) – we
shouldn’t worry about the units of the
price (e.g., dollars or pounds):

τ =
σ2

2
(T − t)

z = ln(x/K)

v =
w

K

Now we do some calculations:
∂t

∂τ
= −

2

σ2

and
∂x

∂z
= x.
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Then we have

∂v

∂τ
=

1

K

∂w

∂τ
=

1

K

(
∂w

∂x

∂x

∂τ
+
∂w

∂t

∂t

∂τ

)
=

1

K

(
−

2

σ2

)
w2

and

∂v

∂z
=

1

K

∂w

∂z
=

1

K

(
∂w

∂x

∂x

∂z
+
∂w

∂t

∂t

∂z

)
=

1

K
xw1.

Using this, we get

∂2v

∂z2
=

1

K

∂xw1

∂z
=

1

K

(
∂w1

∂z
x+ w1

∂x

∂z

)
=

1

K

(
∂w1

∂x

∂x

∂z
x+

∂w1

∂t

∂t

∂z
x+ xw1

)
=

1

K
(x2w11 + xw1).
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Now we’ll do some rearranging of the B-S
equation, and then put in what we have
gotten from the change of variables.
Starting from

w2 + rxw1 +
1

2
σ2x2w11 − rw = 0.

we multiply by −2
Kσ2

−2w2

Kσ2
+
−2

Kσ2
rxw1−

1

K
x2w11 +

2

Kσ2
rw = 0.

We rearrange, and add/subtract
appropriate terms:

−2w2

Kσ2
=

x2w11

K
+

2rxw1

Kσ2
−

2rw

Kσ2

−2w2

Kσ2
=

x2w11

K
+
w1x

K
+

2rxw1

Kσ2
+
w1x

K
−

2rw

Kσ2

or,

−2w2

Kσ2
=

1

K
(x2w11 + xw1)

+
(

2r

σ2
− 1

)
xw1

K
−

2rw

Kσ2
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Then, putting in the change of variables,
we have:

∂v

∂τ
=
∂2v

∂z2
+ (k − 1)

∂v

∂z
− kv

where k = 2r
σ2, and we have the boundary

condition v(z,0) = max(ez − 1,0).

This is close to a heat equation, but we
need one more change of variables. If we
let, for some constants α, β,

u(z, τ) = eαx+βτv(z, τ)

we will have

βu+
∂u

∂τ
= α2u+ 2α

∂u

∂z
+
∂2u

∂z2

+(k − 1)
(
αu+

∂u

∂z

)
− ku

If we choose

α = −
1

2
(k − 1)

and

β = α2 + (k − 1)α− k = −
1

4
(k + 1)2,
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then we are left with the heat equation:

∂u

∂τ
=
∂2u

∂z2
.

At this point we’ll just appeal to standard
methods for solving the heat equation
(e.g., Fourier series methods). The
general solution will be of the form:

u(z, τ) =
1

σ
√

2πτ

∫ ∞
−∞

u0(y)e−(z−y)2/(2σ2τ) dy.

Undoing the changes of variable, we get:

w(x, t;K,T, r) = xΦ(d1)−Ke−r(T−t)Φ(d2) ,

where Φ is the standard normal
cumulative distribution function

Φ(x) =
1√
2π

∫ x
−∞

e(−u
2

2 )du

and

d1 =
ln(x/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 =
ln(x/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t
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Diffusion and Flux ←

• Now let’s suppose we have many “random

walkers” in some environment, and we

observe the behavior of the collection of

walkers. If the walkers are tiny particles in

a fluid, being buffeted about by the

molecules of the fluid, this process is

often called brownian motion (after the

Scottish botanist Robert Brown, who

observed the jittery motion of pollen

grains and moss spores in water). If the

density distribution of the walkers is

non-uniform, we can expect to observe

flows in the density distribution over time.

As observed above, in the continuous

limit, we have the ”heat equation” as the

PDE governing the (probability) density

distribution of the walkers. In one

dimension, this is:

∂P (x, t)

∂t
= D ∗

∂2P (x, t)

∂x2
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More generally, in higher dimensions we

will have:

∂P (~r, t)

∂t
= D ∗∆P (~r, t)

= D ∗ ∇2P (~r, t)

where

∆ = ∇2 = ∇ · ∇ =
n∑

k=1

∂2

∂x2
k

is the Laplacian operator.

If the diffusion coefficient depends on the

position and/or density, we have:

∂P (~r, t)

∂t
= ∇ ·

(
D(P,~r)∇P (~r, t)

)
.

In the case of constant diffusion

coefficient (D), this is a linear PDE. In

the more general case, we are working

with a nonlinear PDE.
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Given this framework, we can explore

various boundary conditions and special

cases.

For example, if the walkers all start at

location ~0, over time they will map out a

sample of a normal distribution with mean

position ~0 and mean square displacement

< |~r|2 >= qiDt, where qi depends on the

dimension (qi = 2,4,6 in dimensions

1,2,3). In 1 dimension, it is easy to see

the
√
t mean displacement:
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Here is a 2-dimensional example:
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• Now, suppose that there are variations in
the distribution of the walkers. Over
time, we will see a “flow” in the
distribution. We can call the rate of this
flow the “flux” of the distribution.

Consider a 1-dimensional example.
Suppose that the walkers live in three
dimensions, but are constrained to walk
along lines parallel to the x axis. We
would like to calculate the flux through
the plane x = 0.
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Assume that the walkers move left or
right a distance δ with probability 1/2 in
each time step τ . Then between time t
and t+ τ , some walkers will cross the
plane x = 0 from left to right, and some
from right to left. Only those walkers
within distance δ of x = 0 can cross x = 0
during one time step. If N(l) and N(r)
are the number of walkers within δ to the
left/right of x = 0, then the expected net
number of particles crossing x = 0 to the
right will be 1/2N(l)− 1/2N(r).

Doing some manipulations, the flux
through x = 0 will be

Jx = −
δ2

2τ

1

δ

[
N(r)

Aδ
−
N(l

Aδ

]
where A is an area. Taking continuous
limits, this boils down to

Jx = −D
∂P

∂x
(the negative means the flow is from
higher to lower concentrations). This is
usually called Fick’s first law of diffusion.
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We will have, in general,

Jx = −D
∂P

∂x

Jy = −D
∂P

∂y

Jz = −D
∂P

∂z

and, for radial flow from a central point,

Jr = −D
∂P

∂r
.
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Biology: Limits of Growth
←

• Let’s look at an application of Fick’s First

Law to limits to growth. We will consider

an immobile cell that acquires its nutrients

through absorption of nearby diffusing

resources. For simplicity, we will assume

that the cell is spherical, that we only

need to consider a single resource, which

is (initially) uniformly distributed through

the medium in which the cell lives, and

that the cell’s membrane is completely

effective in removing the resource from

the medium at its surface. We will also

assume that the pool in which the cell is

living is so large that the concentration of

nutrient far from the cell is essentially

constant. We will assume that everything

else is “simple” also, as needed . . .
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Here’s a general picture of the situation:

Let the radius of the cell be rc, the
concentration of nutrient far from the cell
is P∞, and the cell is at the origin. At the
steady state (after the cell has been in
the pool for a long time), we will have
d(P )
dt = 0, and therefore, outside the cell,

we will have

0 = ∇2P

=
1

r2

d

dr

(
r2d(P )

dr

)
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We have the boundary conditions that
P (rc) = 0, and P (∞) = P∞. With these
conditions, the steady state concentration
will be

P (r) = P∞ ∗
(

1−
rc

r

)
,

and the (radial) flux will be

Jr = −D ∗ P∞ ∗
rc

r2
.

The total rate of flow of resource into the
cell (the current) will be

I = Area ∗ (−Flux)

= 4πr2
c (−Jr)

= 4πr2
cDP∞

rc

r2
c

= 4πDP∞rc.

The inflow thus will increase linearly with
increase in radius of the cell. This may at
first seem somewhat counter intuitive –
while the surface area of the cell grows as
the square of the radius, the inflow of
resources only grows linearly with the
radius.
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The linear increase in inflow will impose

limits on the possible growth of a cell.

As a first approximation, we can estimate

that the metabolic needs of a cell depend

on its total mass, hence on its volume,

and hence on r3
c . We can write the

metabolic need of the cell as

Metabolic need =
4πr3

cM

3
where M expresses the metabolic resource

consumption rate in moles per second per

cubic meter. The maximum size the cell

can attain will be reached when the

resource inflow is equal to the metabolic

need, i.e., when

4πDP∞rc =
4πr3

cM

3
.

We can solve this equation for rc:

rc =

√
3DP∞
M

.
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A particular example of this phenomenon

is phytoplankton, which use bicarbonate

ions (HCO−3 ) as a source of carbon for

photosynthesis. The metabolic need is

about one mole of bicarbonate per second

per cubic meter of cell cytoplasm, the

concentration of bicarbonate in seawater

is about 1.5 moles per cubic meter, and

the diffusion coefficient for bicarbonate in

water is about 1.5 ∗ 10−9m2s−1. Putting

these numbers into the equation, we get

rc =

√
3DP∞
M

=

√
3 ∗ 1.5 ∗ 10−9m2s−1 ∗ 1.5 mole ∗m−3

1 mole s−1m−3

=
√

3 ∗ 1.5 ∗ 1.5 ∗ 10−9m2

=
√

6.75 ∗ 10−9m2

=
√

6,750 ∗ 10−12m2

≈ 80µm.

This is a fairly typical size for

phytoplankton. Note that an individual
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cell could be larger than this, but its

photosynthesis rate would be constrained.

The increase in metabolic need generally

does not increase quite as fast as the

increase in mass (volume). Evidence

points to the increase being more like

M3/4. This will make some minor

differences in the details, but the general

principle of limits to growth will still hold

. . .

This example, and the next one on

receptor/channels, are explored more fully

in the books Random Walks in Biology by

Berg, and Chance in Biology by Denny

and Gaines.
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Biology: Receptors,
Channels, and Flow ←

• For our next example, we’ll look at more
restricted flows into a cell. This might be
flow into a receptor, or through a channel.

We start by looking at diffusive flow into
a circular disk of radius r. We assume
that the disk is in the plane boundary of a
semi-infinite medium. The medium
contains a (diffusing) resource, absorbed
by/through the disk.
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Assuming that the concentration of the

resource far away from the disk is P∞, the

diffusion coefficient of the resource in the

medium is D, and the radius of the disk is

rd, then the current into the disk will be

given by:

Id = 4DrdP∞.

We are actually thinking of the bounding

plane as being the cell membrane, with

the radius of the disk small in comparison

with that of the cell. Our goal now is to

understand the behavior of the system if

there are many disk-like patches on the

surface of the cell.
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The simple assumption that the total

absorption of many patches is just the

sum of the absorptions of the individual

patches can’t be right. For example, if

the radius of the sphere is 1,000 times the

radius of a disk/patch (i.e., rc = 103rd),

and we cover the surface of the sphere

with patches, we would use approximately

4,000,000 patches. The naive estimate,

using our formula for the flow through a

patch, would be that the total flow

through the 4 ∗ 106 patches would be

4 ∗ 106 ∗ 4DP∞rd. But, from the previous

section, we know that we should expect

the flow to be more like 4πDP∞103rd, so

we are off by a factor of more than 1,000.

We’ll have to look a little more carefully

at what is happening.
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Let’s consider the situation if we had a

couple of the disks near each other on the

surface of a sphere:

The lines of flux are radial outside r + dr.

The concentration of resource is 0 at the

surface of the sphere, P∞ outside the

larger sphere of radius r + dr, and some

intermediate value in between.

We can analyze the system through

analogy with electrical potential. It is
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equivalent to a system in which electricity
flows through a resistive medium to
conductive patches on the sphere, with
the resistive medium at potential P∞ and
the patches at potential 0. By Ohm’s
Law, the current through a resistor is
equal to the potential drop between its
terminals divided by its resistance. In our
situation, at steady state diffusion we
have I = C/R where I is the diffusion
current, C is the concentration difference,
and R is the diffusion resistance. The
patches will share the inflowing resource,
like resistors in parallel:
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The resistance for the sphere will be

Rc = 1
4πDrc

. The resistances for the disks

will be Rd = 1
4Drd

. The total resistance of

the circuit (with N disks on the surface of

the sphere) will be

R = Rrc+drc +
Rd
N

=
1

4π(rc + drc)
+

1

4DNrd
.

Since drc << rc, we get the reasonable

approximation that

R ≈
1

4πrc
+

1

4DNrd

=
1

4πrc

(
1 +

πrc

Nrd

)

= Rrc

(
1 +

πrc

Nrd

)
The diffusion resistance for a sphere with

N disks on it will be greater than the

resistance of a sphere by a factor of

1 + πrc
Nrd

.
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The current through the patches into the

cell will be smaller than the current into a

sphere completely covered with patches

by the same factor:

I =
4πDrcP∞
1 + πrc

Nrd

.

For small N , with the patches widely

separated from each other, the current

will increase as 4NDrdP∞. For large N

(the cell nearly covered with patches), the

current will be (asymptotically) 4πDrcP∞.

Here is a general picture of the growth of

the current with increasing N :

I

N
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• Given this relationship, we can see that

the diffusion current through the patches

will reach 1
2 its maximum when N = πrc

rd
.

This number can be surprisingly small.

As an example, suppose the cell has

radius rc = 5µm, and the receptor “disks”

are proteins with binding sites with radius

rd ≈ 10Å. This cell can absorb the

corresponding resource at 1
2 its maximum

when N ≈ 15,700. Only a small fraction

of the surface area of the cell is covered

with receptors, that is

Nπr2
d

4πr2
c

= 1.6 ∗ 10−4.

The typical distance between receptors

will be roughly(
4πr2

c

N

)1/2

= 0.14µm,

or approximately 140 times the binding

site radius.
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A consequence of this is that a cell can

have many varieties of receptors or

channels, each working at 1/2 their

maximum, as long as the receptors are

specific to their particular resource and

don’t interfere with each other.
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