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Science and wisdom �

“Science is organized knowledge. Wisdom is
organized life.”

- Immanuel Kant

“My own suspicion is that the universe is not
only stranger than we suppose, but stranger
than we can suppose.”

- John Haldane

“Not everything that can be counted counts,
and not everything that counts can be
counted.”

- Albert Einstein (1879-1955)

“The laws of probability, so true in general,
so fallacious in particular .”

- Edward Gibbon
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Assessing risks ←

• The task of assessing risks in our lives is

notoriously difficult. One thing we can try

to do is calculate the probabilities of

various events happening. Unfortunately,

humans (even well trained scientists,

mathematicians, and probabilists) often

do a poor job of estimating probabilities.

There is an apocryphal story of a

statistician who always packed a bomb in

his luggage when flying in a plane. When

asked why, he explained that he knew that

if the probability of there being one bomb

on a plane was 1
1000, then the probability

of there being two bombs would be

1

1000
∗

1

1000
=

1

1,000,000
,

and he felt much safer with the 1
1,000,000

chance . . .
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• Obviously there is something wrong with

this statistician’s calculation of

probabilities.

I sometimes wonder whether we in the

US, holding on to our nuclear weapons,

have fallen into a similar sort of confusion

about calculating risks and “feeling safer.”

• I won’t go through much, but some

probability basics, where a and b are

events:

P (not a) = 1− P (a).

P (a or b) = P (a) + P (b)− P (a and b).

The probability of two events happening,

P (a and b) (often denoted by P (a, b)), can

be quite difficult to calculate, since we

often do not know how the events a and b

are related to each other.
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• Conditional probability:

P (a|b) is the probability of a, given that

we know b. The joint probability of both

a and b is given by:

P (a, b) = P (a|b)P (b).

Since P (a, b) = P (b, a), we have Bayes’

Theorem:

P (a|b)P (b) = P (b|a)P (a),

or

P (a|b) =
P (b|a)P (a)

P (b)
.

• If two events a and b are such that

P (a|b) = P (a),

we say that the events a and b are

independent.

7



• Note that if a and b are independent,

P (a|b) = P (a),

then from Bayes’ Theorem, we will also

have that

P (b|a) = P (b),

and therefore,

P (a, b) = P (a|b)P (b) = P (a)P (b).

This last equation is often taken as the

definition of independence.

• We have in essence begun here the

development of a mathematized

methodology for drawing inferences about

the world from uncertain knowledge.
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Miracles �

“The opposite of a correct statement is a

false statement. The opposite of a profound

truth may well be another profound truth.”

- Niels Bohr (1885-1962)

“Groundless hope, like unconditional love, is

the only kind worth having.”

- John Perry Barlow

“There are only two ways to live your life.

One is as though nothing is a miracle. The

other is as though everything is a miracle.”

- Albert Einstein (1879-1955)

“The Universe is full of magical things

patiently waiting for our wits to grow

sharper.”

-Eden Phillpotts
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“Nature uses only the longest threads to

weave her patterns, so that each small piece

of her fabric reveals the organization of the

entire tapestry.”

- Richard Feynman
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Using Bayes’ Theorem ←

• A quick example:

Suppose that you are asked by a friend to

help them understand the results of a

genetic screening test they have taken.

They have been told that they have

tested positive, and that the test is 99%

accurate. What is the probability that

they actually have the anomaly?

You do some research, and find out that

the test screens for a genetic anomaly

that is believed to occur in one person

out of 100,000 on average. The lab that

does the tests guarantees that the test is

99% accurate. You push the question,

and find that the lab says that one

percent of the time, the test falsely

reports the absence of the anomaly when

it is there, and one percent of the time
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the test falsely reports the presence of the

anomaly when it is not there.

The test has come back positive for your

friend. How worried should they be?

Given this much information, what can

you calculate as the probability they

actually have the anomaly?

In general, there are four possible

situations for an individual being tested:

1. Test positive (Tp), and have the

anomaly (Ha).

2. Test negative (Tn), and don’t have

the anomaly (Na).

3. Test positive (Tp), and don’t have the

anomaly (Na).

4. Test negative (Tn), and have the

anomaly (Ha).
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We would like to calculate for our friend

the probability they actually have the

anomaly (Ha), given that they have

tested positive (Tp):

P (Ha|Tp).

We can do this using Bayes’ Theorem.

We can calculate:

P (Ha|Tp) =
P (Tp|Ha) ∗ P (Ha)

P (Tp)
.

We need to figure out the three items on

the right side of the equation. We can do

this by using the information given.
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Suppose the screening test was done on
10,000,000 people. Out of these 107

people, we expect there to be
107/105 = 100 people with the anomaly,
and 9,999,900 people without the
anomaly. According to the lab, we would
expect the test results to be:

– Test positive (Tp), and have the
anomaly (Ha):

0.99 ∗ 100 = 99 people.

– Test negative (Tn), and don’t have
the anomaly (Na):

0.99 ∗ 9,999,900 = 9,899,901 people.

– Test positive (Tp), and don’t have the
anomaly (Na):

0.01 ∗ 9,999,900 = 99,999 people.

– Test negative (Tn), and have the
anomaly (Ha):

0.01 ∗ 100 = 1 person.
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Now let’s put the the pieces together:

P (Ha) =
1

100,000

= 10−5

P (Tp) =
99 + 99,999

107

=
100,098

107

= 0.0100098

P (Tp|Ha) = 0.99
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Thus, our calculated probability that our

friend actually has the anomaly is:

P (Ha|Tp) =
P (Tp|Ha) ∗ P (Ha)

P (Tp)

=
0.99 ∗ 10−5

0.0100098

=
9.9 ∗ 10−6

1.00098 ∗ 10−2

= 9.890307 ∗ 10−4

< 10−3

In other words, our friend, who has tested

positive, with a test that is 99% correct,

has less that one chance in 1000 of

actually having the anomaly!
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• Some questions:

1. Are examples like this realistic? If not,

why not?

2. What sorts of things could we do to

improve our results?

3. Would it help to repeat the test? For

example, if the probability of a false

positive is 1 in 100, would that mean

that the probability of two false

positives on the same person would be

1 in 10,000 ( 1
100 ∗

1
100)? If not, why

not?

4. In the case of a medical condition such

as a genetic anomaly, it is likely that

the test would not be applied

randomly, but would only be ordered if

there were other symptoms suggesting

the anomaly. How would this affect

the results?
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The ‘doomsday argument’
←

• There is a line of reasoning called the

“doomsday argument” (attributed to

Brandon Carter in the 1980’s) suggesting

that we consistently underestimate the

likelihood that the human race will end

soon.

What follows is a brief summary of the

general theme of the argument.

• Suppose you have before you two urns,

and are told that one contains ten balls

labeled 1 through 10, and the other

contains one thousand balls labeled 1

through 1000. You choose one of the

urns at random. A ball is drawn at

random from the urn you chose, and the

ball drawn has on it the label ‘7’. What is
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the probability that the urn you chose is

the one with ten balls in it?

In the beginning, before drawing the ball

labeled ‘7’, we have

P (ten) = P (thousand) =
1

2
.

After drawing the ball, however, we can

use Bayes’ theorem to calculate:

P (ten | draw ‘7‘) =
P (draw ‘7‘ | ten) ∗ P (ten)

P (draw ‘7‘)

=
1
10 ∗

1
2

1
2 ∗

1
10 + 1

2 ∗
1

1000

=
1
20

1
20 + 1

2000

=
1
20
101
2000

=
2000

2020

= 0.990099
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• Now the ‘doomsday argument’

. . . Consider the two possibilities:

D: We humans destroy ourselves before

we leave earth and colonize the universe.

U: We colonize the universe.

We now estimate: In the case ‘D’, no

more than 100,000,000,000 = 1011

humans will ever live, and I am one of

those 1011.

In the case ‘U’, many more humans will

live, say 1015.

I know that I am among the first

10,000,000,000 people to live, so in

terms of human birth order, we can say

that my ‘label’ is say 8,000,000,000 (call

this ‘L8B’).
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We now use Bayes’ theorem:

P (D | L8B) =
P (L8B | D) ∗ P (D)

P (L8B)

=
1

1011 ∗ P (D)

P (D) ∗ 10−11 + (1− P (D)) ∗ 10−15

=
1

1011 ∗ P (D)

104∗P (D)+(1−P (D))
1015

=
104 ∗ P (D)

104 ∗ P (D) + (1− P (D))

Now put in a value for P (D), and see

what happens:

If we start with an estimate P (D) = 1
100,

then

P (D | L8B) =
104 ∗ 10−2

104 ∗ 10−2 + (1− 10−2)

=
102

102 + 0.99
= 0.990197

21



• In other words, if our original estimate for

the likelihood of ‘doomsday’ was

P (D) = 1
100, we should revise that

estimate upward to 0.990197!

You can try other values for the various

pieces on your own . . .
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