Some history
We have the map
given by
vn(r,s) =
where
We have the map
$ b_n: \Sigma^2U(n) \rightarrow SU(n+1) $ \newline
given by
\[ b_n(g, r, s) = \left[ i(g), v_n(r, s) \right] \]
where $i(g)$ is the inclusion,
$\left[g, h\right] = ghg^{-1}h^{-1}$ \newline
and
$ v_n(r,s) = $
\[
\left[ \begin{array}{cccccc}
\alpha & 0 & 0 & \cdots & 0 & \beta (-\overline{\alpha})^0 \\
\beta (-\overline{\alpha})^0\overline{\beta} &
\alpha & 0 & \cdots & 0 &
\beta (-\overline{\alpha})^1 \\
\beta (-\overline{\alpha})^1\overline{\beta} &
\beta (-\overline{\alpha})^0\overline{\beta} &
\alpha & \cdots & 0 & \beta (-\overline{\alpha})^2 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\beta (-\overline{\alpha})^{n-1}\overline{\beta} &
\beta (-\overline{\alpha})^{n-2}\overline{\beta} &
\cdots & \cdots & \alpha &
\beta (-\overline{\alpha})^n \\
-(-\overline{\alpha})^n\overline{\beta} &
-(-\overline{\alpha})^{n-1}\overline{\beta} &
\cdots & \cdots & -(-\overline{\alpha})^0
\overline{\beta} & -(-\overline{\alpha})^n \\
\end{array} \right]
\]
where
\[ \alpha = \alpha(r,s) =
\cos(\pi r) + i \sin(\pi r)\cos(\pi s) \]
\[ \beta = \beta(r,s) = i \sin(\pi r)\sin(\pi s) \]
What's wrong in computing today
The intelligent mathematical assistant