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Unité de Recherche des Universités Paris 6 et Paris 11 associée au CNRS

1



1 Introduction

The Bethe lattice, or the infinite Cayley tree, presents a hierarchical structure that greatlty simplifies
some problems of statistical physics. It has therefore been widely used to obtain analytical results for
problems that are otherwise intractable on Euclidean lattices. The physical relevance of these results
is that the Bethe lattice is supposed to represent some mean field limit of Euclidean lattices of very
large dimensions.

The tree structure is also directly relevant to characterize the phase space hierarchical structure
of some disordered systems like spin glasses [1], where this structure plays an essential role in the
understanding of the slow dynamics properties of these systems [2] [3] [4].

Random walks on Bethe lattices have already been studied either for their own interest [5] [6] [7],
or in the context of polymer physics [8] [9], where counting unentangled loops of a polymer in an array
of obstacles is equivalent to counting random walks on Cayley trees. In this paper, we give the exact
solution to this problem of random walk on the Bethe lattice and discuss the correspondance with
Brownian motion on a space of constant negative curvature.

The paper is organized as follows. In section 2, we consider a mapping between random walk
on the Bethe lattice and a biased random walk on the half-line with reflection at the origin. We
derive asymptotic expressions at large time through a simple argument, and write the exact explicit
solution using old results of Mark Kac [10]. Section 3 is devoted to biased Brownian motion on the
half-line with a reflective barrier at the origin, which represents the continuous limit of the previous
discrete model. Finally in Section 4, we discuss the relation between the Bethe lattice and hyperbolic
geometry. We compare the properties of Brownian motion on a space of constant negative curvature
to the results obtained in the previous sections.

2 Random walk on the Bethe lattice and biased random walk on

the half-chain

Hughes and al. [5] have pointed out that a random walk on the Bethe lattice can be mapped onto a
biased one-dimensional lattice walk with a reflecting barrier at the origin, provided one only considers
the distance to the origin on the Bethe lattice as a function of time. In this section, we first rederive this
correspondence to fix our notations. We then use the generating function formalism and a Tauberian
theorem to obtain the large time asymptotic behavior of the probability of being at any given distance
from the origin at time t. This result generalizes a previous one concerning the asymptotic behavior
of the probability of returning to the origin at time t [8] [6] [7]. We finally use an old result of Kac
[10] to write the full solution of the problem of random walk on the Bethe lattice in an exact closed
form.

2.1 Master Equation

We consider a random walk on the Bethe lattice of coordination number z > 2. We take the origin of
the random walk as the origin of coordinates, and call generation n the set of all the z(z− 1)n−1 sites
distant from the origin by n ≥ 1 bonds (see Fig.1).

The random walk is defined as follows. At each time step, the particle jumps with probability
(

1
z

)

to any of its z nearest neighbors. Therefore, the particle goes further from the origin with probability
(

z−1
z

)

, and goes closer to the origin with probability
(

1
z

)

. The corresponding Master Equation for
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the probability fτ (n) of being on any site of generation n after τ time steps reads

fτ+1(n) =

(

1 − 1

z

)

fτ (n− 1) +
1

z
fτ (n+ 1) for n ≥ 2 (1)

This has to be supplemented by specific rules at the boundary sites n = 1 and n = 0

fτ+1(1) = fτ (0) +
1

z
fτ (2) (2)

fτ+1(0) =
1

z
fτ (1) (3)

and by the intitial condition at τ = 0
fτ=0(n) = δn,0 (4)

The normalization reads
∞
∑

n=0

fτ (n) = 1 for any τ .

The random walk on the Bethe lattice can therefore be described as an asymmetric one-dimensional
random walk on the half-line n ≥ 0 with a reflecting barrier at the origin n = 0 [5]. One may then use
standard techniques for one-dimensional random walks.

2.2 Asymptotic behavior at large time

It is convenient to introduce the generating function

Fn(λ) =
∞
∑

τ=0

λτfτ (n) (5)

The master equation (1) for fτ (n) is then converted into the recurrence relation

Fn+1(λ) =
z

λ
Fn(λ) − (z − 1)Fn−1(λ) for n ≥ 2 (6)

and the boundary rules (2-3) together with the initial condition (4) give the relations

F2(λ) =
z

λ
F1(λ) − zF0(λ) (7)

F1(λ) =
z

λ
[F0(λ) − 1] (8)

Two linearly independant solutions of (6) are [r(λ)]n and [r′(λ)]n where r(λ) and r′(λ) are the solutions
of the characteristic equation

r2 − z

λ
r + (z − 1) = 0 (9)

As we must only keep the regular solution in the limit λ→ 0 (5), we get for n ≥ 2

Fn(λ) = [r(λ)]n−1 F1(λ) with r(λ) =
z

2λ

[

1 −
√

1 − 4

z2
(z − 1)λ2

]

(10)

The two first terms F1(λ) and F0(λ) are then determined by (8)

F0(λ) =
2
(

z−1
z

)

(

z−2
z

)

+
√

1 − 4
z2 (z − 1)λ2

(11)

F1(λ) =
z

λ





1 −
√

1 − 4
z2 (z − 1)λ2

z−2
z

+
√

1 − 4
z2 (z − 1)λ2



 (12)
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The probabilities fτ (n) may then in principle be obtained by expanding the previous expressions (10-
12) in powers of λ (5). This has been done for the function F0(λ) to obtain fτ (0) in an explicit form
involving hypergeometric functions [8] [7]. This has not been done for the general case n > 0, where
it is preferable to use some other method to get an exact explicit expression of fτ (n) for any n (See
next paragraph 2.3).

However, the asymptotic behavior at large time of fτ (n) for any fixed n may be easily found from
the generating function using a Tauberian theorem.

Introducing the notations ν =
z − 2

z
and α =

2

z

√
z − 1, the generating function reads for n ≥ 1

Fn(λ) = 2

[

z

2λ

(

1 −
√

1 − (αλ)2
)]n 1

ν +
√

1 − (αλ)2
= gn(αλ) (13)

with the auxiliary function

gn(x) = 2

[

zα

2x

(

1 −
√

1 − x2
)

]n 1

ν +
√

1 − x2
(14)

that admits the power series expansion

gn(x) =
∑

{k≥0;(k−n)even}

ck(n) xk (15)

Since we have the simple relation fτ (n) = cτ (n)ατ , the asymptotic behavior of the probability
fτ (n) at large time τ is directly related to the behavior of the coefficients ck(n) for large order k. The
latter can readily be obtained from the expansion of gn (14) near x = 1

gn(e−E) '
E→0+

2

ν

(

zα

2

)n [

1 −
(

n+
1

ν

)√
2E +O(E)

]

(16)

Using the power series expression (15), we get

∑

{k≥0;(k−n)even}

ck(n)
(

1 − e−kE
)

'
E→0+

2

ν

(

n+
1

ν

)(

zα

2

)n √
2E +O(E) (17)

The non-analyticity in
√
E implies that the coefficients ck(n) present the following algebraic decay at

large order k for (k − n) even

ck(n) '
k→∞

A(n)

k
3

2

(18)

(19)

The prefactor A(n) can also be obtained from (17) by converting the sum into an integral

A(n) =
2

ν

(

n+
1

ν

)(

zα

2

)n 2
3

2

∫ ∞

0
du

(

1 − e−u

u
3

2

) =
2

3

2√
π

(1 + nν)

ν2

(

zα

2

)n

(20)

We finally get for (k − n) even

fτ (n) = cτ (n) ατ '
τ→∞

A(n)
ατ

τ
3

2

(21)
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or more explicitly

fτ (n) '
τ→∞

2
3

2√
π

(

z

z − 2

)2 (

1 + n
z − 2

z

)

(√
z − 1

)n 1

τ
3

2

e
−τ ln

(

z

2
√
z − 1

)

(22)

This formula valid for n ≥ 1 generalizes the result obtained previously for the case n = 0 [8] [6] [7]

fτ (0) '
τ→∞

2
3

2√
π

z(z − 1)

(z − 2)2
1

τ
3

2

e
−τ ln

(

z

2
√
z − 1

)

(23)

2.3 Exact expression for fτ (n)

In [10], Kac studied the asymmetric random walk (1) with the reflective boundary condition (2-3),
but in the domain of negative drift 1 < z < 2. Using our notations, the explicit expression obtained
in this paper for the initial condition (4) reads

f (0<z<2)
τ (n) = (2 − z)

[

δn,0 + z (z − 1)n−1 (1 − δn,0)

][

1+(−1)n+τ

2

]

(24)

+
2

π

[(

z − 1

z

)

δn,0 + (z − 1)
n
2 (1 − δn,0)

]

(

2
√
z − 1

z

)τ

I(n, τ) (25)

where

I(n, τ) = [1 + (−1)n+τ ]

∫ π
2

0
dθ (cos θ)τ

tan2 θ
(

z−2
z

)2
+ tan2 θ

[

cosnθ +

(

z − 2

z

)

sinnθ

sin θ
cos θ

]

(26)

The first term (24) can be easily recovered as the normalized ”stationary” (invariant under the time
translation τ → τ + 2) solution of (1) in the case of negative drift 1 < z < 2.

For the case of positive drift z > 2, which we consider in this paper, there is no normalizable
stationary solution. The exact expression for fτ describing the random walk on the Bethe lattice
therefore only contains the second term (25)

f (z>2)
τ (n) =

2

π

[(

z − 1

z

)

δn,0 + (z − 1)
n
2 (1 − δn,0)

]

(

2
√
z − 1

z

)τ

I(n, τ) (27)

For the particular case n = 0, the integral I(0, τ) (26) may be computed through the change of
variable x = cos2 θ

I(0, 2τ) = 2

∫ π
2

0
dθ (cos θ)2τ tan2 θ

(

z−2
z

)2
+ tan2 θ

=

∫ 1

0
dx

xτ−1 (1 − x)
1

2

1 −
(

4(z−1)
z2

)

x
(28)

which is a standard integral representation of the hypergeometric function

I(0, 2τ) = B

(

τ +
1

2
,
3

2

)

F

(

1, τ +
1

2
, τ + 2,

4(z − 1)

z2

)

(29)

We therefore recover the expression given in [8] [7]

f (z>2)
τ (0) =

(

z − 1

z

)

(√
z − 1

z

)2τ
Γ(2τ + 1)

Γ(τ + 1) Γ(τ + 2)
F

(

1, τ +
1

2
, τ + 2,

4(z − 1)

z2

)

(30)
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We may also recover from the expression (27) the asymptotic expression at large time given previ-
ously in (22). Indeed for large τ , the integral I(n, τ) (26) is dominated by the vicinity of θ = 0. The
estimation of the leading order

I(n, τ) '
τ→∞

[1 + (−1)n+τ ]

∫ ∞

0
dθ e−τ θ2

2 θ2
[

1 +

(

z − 2

z

)

n

]

(31)

=

[

1 + (−1)n+τ

2

]√
2π

(

z

z − 2

)2 [

1 +

(

z − 2

z

)

n

]

1

τ
3

2

(32)

gives back (22).

3 Biased Brownian motion on the half-line

We consider the continuum counterpart of the biased random walk described in section (1). The
probability density P (x, t) for a Brownian particle of diffusion constant D submitted to a constant
positive drift µ satisfies the Fokker-Planck equation

∂P

∂t
=

∂

∂x

(

D
∂P

∂x
− µP

)

(33)

It must be supplemented by the reflection condition at x = 0

(

D
∂P

∂x
− µP

)

(x = 0, t) = 0 (34)

to ensure conservation of probability, and by the initial condition

P (x, t→ 0+) = δ(x) (35)

3.1 Expression of the probability density P (x, t)

It is convenient to perform the transformation

P (x, t) = e
µx
2D ψ(x, t) (36)

in order to cast the Fokker-Planck equation (33) into the Euclidean Schrödinger equation

∂ψ

∂t
= −Hψ (37)

The corresponding Hamiltonian is a free one up to a constant shift

H = −D d2

dx2
+
µ2

4D
(38)

The boundary condition and the initial condition read respectively

(

∂ψ

∂x
− µ

2D
ψ

)

(x = 0, t) = 0 (39)

and
ψ(x, t → 0+) = δ(x) (40)
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Using plane waves, it is easy to construct an orthonormal basis of eigenvectors {ψk(x), k ∈ [0,+∞[}

Hψk =

(

Dk2 +
µ2

4D

)

ψk (41)

satisfying the boundary condition (39)

ψk(x) =
1√
2π

(

e−ikx − µ+ 2iDk

µ− 2iDk
eikx

)

(42)

The Green function ψ(x, t) solution of (37-39-40) may be expanded onto this orthonormal basis

ψ(x, t) =< x|e−tH |0 >=

∫ +∞

0
dk ψk(x) ψ

∗
k(0) e

−t

(

Dk2+ µ2

4D

)

(43)

As a side remark, let us mention that in the case of negative drift µ < 0, in addition to the
continuous spectrum (42), there is also a bound state solution of zero energy which must be added to
the expansion (43). This zero-energy state corresponds to the aforementioned stationary solution of
Kac the discret case (24).

However, in the case of positive drift µ > 0 that we consider here, there is no stationary normal-
izable solution, and the spectrum in purely continuous (43). The resulting integral

ψ(x, t) =
1

π

∫ +∞

−∞
dk

(

k2 − ik µ
2D

k2 + µ2

4D2

)

eikx e
−t

(

Dk2+ µ2

4D

)

(44)

can be computed through the following trick

ψ(x, t) = e
−t µ

2

4D

(

− ∂2

∂x2
− µ

2D

∂

∂x

)

I(x) (45)

The integral I(x), being the Fourier transform of the product of a Gaussian by a Lorentzian, may be
written as a convolution

I(x) =
1

π

∫ +∞

−∞
dk eikx

(

1

k2 + µ2

4D2

)

e−tDk2

=
D

µ

∫ +∞

−∞
dy e

− µ

2D
|x− y| 1√

πDt
e
− y2

4Dt (46)

Going back to the probability density (36), we finally obtain

P (x, t) =
e
−t µ

2

4D√
πDt

e
x
µ

2D






e
− x2

4Dt − µ

2D

∫ ∞

x
dy e

− µ

2D
(y − x)

e
− y2

4Dt






(47)

It is useful to transform the previous expression into

P (x, t) =
e
−t µ

2

4D

2
√
π(Dt)

3

2

e

µ

2D
x ∫ ∞

x
dy y e

− µ

2D
(y − x)

e
− y2

4Dt (48)
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The asymptotic behavior at large time t immediately follows

P (x, t) '
t→∞

e
−t µ

2

4D

2
√
π(Dt)

3

2

e

µ

D
x
∫ ∞

x
dy y e

− µ

2D
y

(49)

= 2

√

D

π

1

µ2

(

1 + x
µ

2D

)

e

µ

2D
x 1

t
3

2

e
−t µ

2

4D (50)

Comparison with the corresponding result for the discrete case (22)

fτ (n) '
τ→∞

2
3

2√
π

(

z

z − 2

)2 (

1 + n
z − 2

z

)

en ln
√
z − 1 1

τ
3

2

e
−τ ln

(

z

2
√
z − 1

)

(51)

shows that even if the two expressions behave qualitatively the same as t−
3

2 e−At as a function of time,
and as (1 + nC) enB as a function of space, there is no direct detailed correspondance at this stage.
If one naively tries to identify x = n and t = τ , then there is no way to find two functions µ(z) and
D(z) to make equations (50) and (51) identical. The relation between the random walk on the Bethe
lattice and the continuous model (33) studied in this section therefore needs further clarification.

3.2 Discussion of the continuous limit

To define properly the continuous limit of the random walk on the Bethe lattice, we must introduce
some unit length ∆x and some unit time ∆t into the Master equation (1)

f(x, t+ ∆t) =

(

1 − 1

z

)

f(x− ∆x, t) +
1

z
f(x+ ∆x, t) (52)

The Taylor expansion
∂f

∂t
=

(

(∆x)2

2∆t

)

∂2f

∂x2
−
(

z − 2

z

∆x

∆t

)

∂f

∂x
(53)

gives the Fokker-Planck equation (33) in the limit

∆x→ 0+ ; ∆t→ 0+ ; z → 2+ (54)

with
(∆x)2

2∆t
= D and

z − 2

2

∆x

∆t
= µ (55)

where D and µ are fixed. This continuous limit therefore requires an analytic continuation to non-
integer coordination number z in order to take the limit z → 2+. With the prescription (54-55), the
result (22) for the discrete case indeed corresponds to the result (50) of the continuous case.

Let us now write for the discrete case the analogue of the transformations that we performed for
the continuous case in order to establish some correspondance with the work of Clark et al. [11]. The
analogue of the transformation (36) to make the walk (1) symmetric

fτ (n) = en ln
√
z − 1 f̃τ (n) (56)

and the extraction of the shift factor analogue to the shift present in (38)

f̃τ (n) = e
−τ ln

(

z

2
√
z − 1

)

pτ (n) (57)

8



transform the drifted random walk with reflection at the origin (1-2-3) into a symmetric random walk
with a partial absorption at the origin

pτ+1(n) =
1

2
pτ (n− 1) +

1

2
pτ (n+ 1) for n ≥ 2 (58)

pτ+1(1) = γ pτ (0) +
1

2
pτ (2) (59)

pτ+1(0) =
1

2
pτ (1) (60)

where γ = z
2(z−1) denotes the reflection coefficient at the origin. The continuous limit of this random

walk with partial absorption at the origin is indeed a quantum mechanical free problem on the half-line
with some mixed boundary condition (39). The detailed discussion of this point contained in [11] is
equivalent to our approach (see 54-55).

The meaning of the continuous model (33) to represent the random walk on the Bethe lattice is
now clear. We will now present another continuous model where the effective drift comes from the
geometry of the underlying space itself.

4 Bethe lattices and Hyperbolic geometry

A link between Cayley trees and hyperbolic geometry has already been emphasized in [12] [13] through
the introduction of tessalations. Indeed, for any integer z ≥ 3, one can construct a tessalation of the
Poincaré upper half-plane with polygons with z sides. Joining the centers of adjacent polygons gives
a Bethe lattice of coordination number z. In the following, we will not use this approach, but rather
establish some intrinsic link between Bethe lattices and spaces of constant negative curvature without
introducing any tessalation.

4.1 Hyperbolic geometry

An N-dimensional Riemannian manifold of constant negative Gaussian curvature K = − 1
a2 may be

described by the metric

ds2N = dr2 + a2 sinh2 r

a
dσ2

N−1 (61)

where r ∈ [0,+∞] measures the distance to the origin, and where dσ2
N−1

denotes the metric of the
unit-sphere SN−1 . For example, dσ2

1 = dθ2 is the metric of the unit circle in terms of polar angle θ,
and dσ2

2 = dθ2 + sin θ2dφ2 is the metric of the unit sphere S2 in terms of the spherical angles (θ, φ).
The volume element dV is covariantly defined as

dVN =

(

a sinh
r

a

)N−1

dr dΩN−1 (62)

where dΩN−1 is the surface element of the unit-sphere SN−1 ; for example dΩ1 = dθ and dΩ2 =
sin θdθdφ.

In particular, the volume of a ball of radius R reads

VN (R) = ΩN−1 a
N
∫ R

a

0
dx (sinhx)N−1 (63)

where ΩN−1 is the total surface of the unit-sphere SN−1 ; for example Ω1 = 2π and Ω2 = 4π. This
volume has the important property to grow exponentially with the distance R

VN (R) ∝
R�a

e
R

(

N − 1

a

)

(64)
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in contrast with the power dependance RN in Euclidean space of dimension N .
In the same way, the number of sites on the Bethe lattice up to generation n

N (n) = 1 + z + z(z − 1) + z(z − 1)2 + · · · + z(z − 1)n−1 =
z(z − 1)n − 2

z − 2
(65)

grows exponentially with the number n of generations

N (n) ∝
n�1

en ln(z − 1) (66)

This is why the Bethe lattice is often considered to be like a Euclidean lattice of infinite dimension. But
it is certainly more interesting to relate it to hyperbolic geometry which presents the same property
(64). More precisely, we may introduce some lattice spacing ∆r on the Cayley tree so that the sites
of generation n are at distance r = n∆r from the origin. Then the exponential dependence of (66)
corresponds to (64) in the following continuous limit of the Bethe lattice

∆r → 0+ ; n→ ∞ ; z → 2+ (67)

with

n∆r = r and
z − 2

∆r
=
N − 1

a
(68)

where N and a are fixed.

4.2 Hyperbolic Brownian motion

The radial part ∆r of the Laplace operator on the N-dimensional Riemannian manifold of constant
negative Gaussian curvature defined by the metric (61) reads

∆r =
1

(

sinh r
a

)N−1

∂

∂r

[

(

sinh
r

a

)N−1 ∂

∂r

]

(69)

On this manifold, free Brownian motion starting from the origin is defined by the diffusion equation
for the Green’s function GN (r, t)

∂GN

∂t
= D∆rGN (70)

and the initial condition

GN (r, t) −→
t→0+

δ(r)
1

r ΩN−1

(71)

The normalization of the Green function GN (r, t) then reads for any time t

1 =

∫

dS GN (r, t) = ΩN−1

∫ +∞

0
dr

(

a sinh
r

a

)N−1

GN (r, t) (72)

The solution reads respectively in two and three dimensions

G2(r, t) =
e
−Dt

4a2

4
√

2a(πDt)
3

2

∫ ∞

r
dy

y e
− y2

4Dt
√

cosh
(y

a

)− cosh
(

r
a

)

(73)
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and

G3(r, t) =
e
−Dt
a2

8a(πDt)
3

2

r e
− r2

4Dt

sinh
r

a

(74)

Consider now the probability density PN (r, t) to be at time t at a distance r from the origin

Pt(r) = SN−1

(

a sinh
r

a

)N−1

GN (r, t) (75)

normalized with respect to the flat measure dr (72)

1 =

∫ +∞

0
dr PN (r, t) (76)

This probability density satisfies the Fokker-Planck equation (70)

∂P

∂t
=

∂

∂r

[

D
∂P

∂r
−D

(

N − 1

a

)

coth

(

r

a

)

P

]

(77)

and the initial condition at t = 0 (71)

PN (r, t) −→
t→0+

δ(r) (78)

The solution reads respectively in two and three dimensions (73-74)

P2(r, t) =
e
−Dt

4a2

2
√

2π(Dt)
3

2

sinh

(

r

a

) ∫ ∞

r
dy

y e
− y2

4Dt
√

cosh
(y

a

)− cosh
(

r
a

)

(79)

P3(r, t) = a
e
−Dt
a2

2
√
π(Dt)

3

2

r sinh
r

a
e
− r2

4Dt (80)

At large distance from the origin r � a, the Fokker-Planck equation (77) corresponds to a one-
dimensional diffusion with a constant drift µ = DN−1

a
(33)

∂P

∂t
∼ ∂

∂r

[

D
∂P

∂r
−D

(

N − 1

a

)

P

]

(81)

One may check that this identification of the effective radial constant drift µ = DN−1
a

at large
distance on the hyperbolic space is entirely consistent with the two continuous limits of the Bethe
lattice previously defined in (54-55) and (67-68).

The solutions (79-80) in two and three dimensions read approximatively at large distance

P2(r, t) '
r�a

e
−Dt

4a2

4
√
π(Dt)

3

2

e

r

2a
∫ ∞

r
dy y e

−
y − r

2a e
− y2

4Dt (82)

P3(r, t) '
r�a

a
e
−Dt
a2

4
√
π(Dt)

3

2

r e

r

a e
− r2

4Dt (83)
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to be compared with (48). These expressions at large time

P2(r � a, t→ ∞) ' a

2
√
πD

3

2

r e

r

2a
1

t
3

2

e
−Dt

4a2 (84)

P3(r, t) '
r�a

a

4
√
πD

3

2

r e

r

a
1

t
3

2

e
−Dt
a2 (85)

are the exact analog of expression (50) at large distance

P (x� 2D

µ
, t → ∞) =

1

2µ
√
πD

x e

µ

2D
x 1

t
3

2

e
−t µ

2

4D (86)

for µ = DN−1
a

. This confirms the equivalence with biased Brownian motion on the half-line.

5 Conclusion

The exact solution (27) to the homogenous random walk on the Bethe lattice was obtained through
a mapping onto a biased one-dimensional random walk on the half-line that describes the ”radial”
dynamics on the tree. This mapping to a one-dimensional lattice can of course be extended to inho-
mogenous random walks on the Bethe lattice that still preserve the radial invariance on the tree [5]
[14] [15], but does not hold any longer as soon as two sites belonging to the same generation are no
more equivalent. This is in particular the case when one considers disordered problems on the Bethe
lattice. This is why the relation with hyperbolic geometry that we presented in section 4 is much
more profound. On a Riemanian manifold of constant negative curvature, we have at our disposal
not only the radial coordinate that corresponds to the generation number on the Bethe lattice, but
also angular coordinates, that correspond to the ”degree of freedom” inside a given generation of the
tree. In this paper, we have discussed in detail the radial correspondance, but it would certainly be
interesting to consider also more precisely the angular part, and to study in particular the continuous
limit of some disordered systems on the Bethe lattice.
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