
For nearly 40 years, one of the classic
icons of modern nonlinear dynamics
has been the Lorenz attractor. With its

intriguing double-lobed shape and chaotic
dynamics, the Lorenz attractor has symbol-
ized order within chaos (Fig. 1). The only
problem is: does it exist? Mathematicians
have lacked a rigorous proof that exact solu-
tions of the Lorenz equations will resemble
the shape generated on a computer by
numerical approximations, and they also
could not prove that its dynamics are gen-
uinely chaotic. Perhaps the calculations
showed something that merely looked like
chaos — a numerical illusion. The smart
money has always been on chaos in the
Lorenz system being real, but the rigorous
techniques of dynamical mathematics were
unable to prove it. Until last year, that is,
when Warwick Tucker of the University of
Uppsala completed a PhD thesis showing
that Lorenz’s equations do indeed define a
robust chaotic attractor. The proof has since
been published (W. Tucker, C. R. Acad. Sci.
328, 1197–1202; 1999), and an excellent
summary has been provided by Marcelo
Viana (Math. Intell. 22, 6–19; 2000).

Tucker’s work is hugely significant, not

just because it provides the Lorenz attractor
with a solid foundation, but because his
techniques will be widely applicable. At last,
the embarrassing gap between what we
think we know about a nonlinear dynamical
system from numerical simulations, and
what we actually know in full logical rigour,
is starting to close. At the moment the meth-
ods are limited to dynamics in three dimen-
sions, but after Tucker’s breakthrough that
may well change. Dimensions greater than
three are of considerable interest because 
the dimension of a dynamical system is not
the dimension of ordinary space, but the
number of variables in the equations. For
example, the motion of a three-body system
consisting of the Earth, Mars and a space
probe requires six variables for each body —
three of position and three of velocity — and
so is an 18-dimensional dynamical system.

Why bother with rigorous proofs? Surely
any practical implications of the equations
are already embodied in the numerical
results — do we need to be obsessed with 
logical rigour? Yes, we do. There are several
reasons for taking numerical solutions of
nonlinear differential equations with a pinch
of salt. Numerical methods are approxima-
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resilient beast. On all counts, the project has
met its goals.

Pseudomonas aeruginosa has a large
genome, about one-third larger than that of
Escherichia coli. In fact it has about as many
genes as the budding yeast Saccharomyces
cerevisiae, and about half as many as the
fruitfly. The large size of the P. aeruginosa
genome allows for a wide diversity of genes.
Although this is no great surprise, the more
detailed annotation of the genome has been
quite revealing. Two features that jump out
can be summarized as regulation, regulation
and more regulation, and pumps, pumps
and more pumps.

Stover et al. discovered a large number of
genes — between 8% and 10% of the predict-
ed total of 5,570 genes — that encode proteins
with sequences similar to those of known reg-
ulators of gene expression. The authors note a
correlation between genome size and the per-
centage of predicted regulators in sequenced
bacterial genomes: the larger the genome, the
higher the percentage of regulatory genes.
For example, Helicobacter pylori — a highly
specialized bacterial pathogen that can colo-
nize the acidic environment of the human
stomach — has 1,709 predicted genes. Fewer
than 20 of these (about 1%) are expected to be
regulatory. Smaller genomes have even lower
percentages of regulatory genes. The incredi-
ble potential for P. aeruginosa to turn genes 
on and off according to the conditions in 
which it finds itself is consistent with its 
nutritional versatility.

The P. aeruginosa genome also encodes 

a number of pumps, which may be the key
to the bacterium’s ability to withstand anti-
biotics in its human host. It has been
suggested that Gram-negative bacteria, a
group to which P. aeruginosa belongs, can
resist the lethal effects of many antibiotics
by pumping them out of their cells faster
than the chemicals can accumulate. Mem-
bers of the RND protein family of ‘multi-
drug efflux’ pumps can render bacteria
impervious to antibiotics4. It is not clear
how or why these pumps evolved; perhaps
they were first needed to eliminate nat-
urally occurring environmental toxins. We
already knew of four RND pumps in P.
aeruginosa (E. coli has the same number,
whereas Mycobacterium tuberculosis, the
persistent pathogen that causes tuberculo-
sis, has none). The sequencing project has
now revealed six more.

When and where are these pumps active?
One idea is that they might be expressed
when P. aeruginosa exists as a biofilm. These
are stationary communities of bacteria that
are enclosed by a self-produced extracellular
matrix. When bacteria exist as biofilms, they
can resist antimicrobial agents. A hypothesis
to explain the persistence of P. aeruginosa in
the lungs of a cystic fibrosis patient is that it
may establish a biofilm in this environment5.

The abundance of regulatory genes and
questions about the regulation of antibiotic
pumps in P. aeruginosa call for investigators
to look into gene expression in this bac-
terium. To this end, the US Cystic Fibrosis
Foundation is again taking a unique
approach, by building on its initial invest-
ment in P. aeruginosa genomics and under-
writing the cost of constructing a P. aerugi-
nosa gene-expression array. The charity
plans to make the array available to inter-
ested researchers at a cost consistent with 
the budgets of academic scientists. It has 
also created a Cystic Fibrosis Bioinformatics
Center, to support scientists using the arrays.
One hopes that the genomic information
reported by Stover et al.1, and the informa-
tion to come from the gene-expression
analysis, will allow us finally to tame this
testy pathogen. ■
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Figure 1 The rod-shaped Pseudomonas
aeruginosa on cultured epithelial cells from the
human respiratory tract. Each P. aeruginosa cell
measures about 0.5 by 2–3 mm. The bacterium
shows extraordinary nutritional versatility. 
This might require the large number of genes 
in its genome (the sequence of which is now
published1) that are predicted to be involved in
regulating gene expression. 

Mathematics

The Lorenz attractor exists
Ian Stewart
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tions, and chaotic systems are highly sensi-
tive to approximations; it is well known that
numerics can sometimes give seriously mis-
leading results. But the deepest reason is that
until we can prove what our computers seem
to be telling us, then we are ignoring a huge
gap in our mathematical technique. Often
such a gap is a clue that important conceptual
ideas are lurking nearby, as is the case here. 

The Lorenz attractor dates from 1963,
when the meteorologist Edward Lorenz pub-
lished an analysis of a simple system of three
differential equations that he had extracted
from a model of atmospheric convection. He
pointed out that they possess some surpris-
ing features. In particular, the equations are
‘sensitive to initial conditions’, meaning that
tiny differences at the start become amplified
exponentially as time passes. This type of
unpredictability is a characteristic feature of
chaos. Conversely, there is also ‘order’ in the
system: numerical solutions of the equa-
tions, plotted in three dimensions, consist of
curves winding round and round a curious
two-sheeted surface, later named the Lorenz
attractor.

The geometry of the attractor is closely
related to the ‘flow’ of the equations — the
curves corresponding to solutions of the 
differential equations. There is an unstable
equilibrium, a saddle point, at the origin.
The curves repeatedly pass this point, and are
pushed away to the left or right, only to circle
round to pass back by the saddle. As they
loop back, adjacent curves are pulled apart
— this is how the unpredictability is created
— and can end up on either side of the 
saddle. The result is an apparently random
sequence of loops to the left and right.

The central technical issue in proving that
the Lorenz system is a chaotic attractor is
translating these statements into suitably
precise mathematics. Tucker’s proof com-
bines two main ideas. One is a conceptual
characterization of chaotic attractors in
terms of ‘singular hyperbolicity’, introduced
by C. Morales, M. J. Pacifico and E. Pujals 
(C. R. Acad. Sci. 326, 81–86; 1998). Previous
work on dynamical systems had concentrated
on ‘hyperbolic’ systems, where the flow of
the equations can always be split into a set of
contracting directions and a complementary
set of expanding ones. But the Lorenz system
is not hyperbolic. Singular hyperbolicity
replaces the idea of expanding directions in
the flow by the condition that part of the flow
should expand in volume. If some sides of a
box expand and others contract, the volume
may nonetheless expand if the amount of
expansion beats the amount of contraction.
So singular hyperbolicity is less restrictive
than hyperbolicity.

Tucker’s other important idea is using
computer calculations in a rigorous way to
establish certain features of the geometry of
the solutions of differential equations —
normal numerics plus precise error esti-

mates. Tucker obtains a rigorous approxima-
tion to the way curves loop back towards the
origin by following the time evolution of lots
of tiny boxes (up to 10,000). But numerical
solutions of differential equations encounter
problems near saddle points, because the
flow slows down exponentially fast. To get
round this difficulty, Tucker uses the well-
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Figure 1 The Lorenz attractor was first derived
from a simple model of convection in the Earth’s
atmosphere. Previously, the Lorenz attractor
could be generated only by numerical
approximations on a computer, as shown here.
Now we have a rigorous proof that confirms its
existence.

established technique of a ‘normal form’.
Near an equilibrium, any differential equa-
tion can be transformed into an equation
that can be solved by an exact formula, to a
high degree of approximation. This formula
can be used instead of the numerical proce-
dure whenever the flow gets too close to the
equilibrium.

The task then reduces to finding a set of
boxes such that curves starting within one 
box eventually return to a box (usually a 
different one), which in effect says that the 
collection of boxes forms an attractor. Some
further technical conditions, related to singu-
lar hyperbolicity, are required to establish that
the flow is chaotic. The search for suitable
boxes begins with an informed guess based 
on raw numerics; any boxes that cause trouble
by growing too fast are subdivided until they
cease to cause trouble. When the subdivision
process of all boxes stops, the proof is com-
plete. Finding a suitable collection of boxes
took about 30 hours on a fast computer.

Technicalities aside, the main idea here is
that, with care, naive numerics can be used
with precise error estimates to establish sig-
nificant features of the flow of a nonlinear
differential equation. When these features
are combined with appropriate conceptual
insights, the existence of chaotic attractors
becomes irrefutable. So, thanks to Tucker,
dynamical systems theorists can at last stop
worrying about whether their most potent
icon might suddenly fall apart. And Lorenz’s
original insight, that the strange behaviour
of his equations was not a numerical artefact,
can no longer be disputed. ■

Ian Stewart is at the Mathematics Institute,
University of Warwick, Coventry CV4 7AL, UK.
e-mail: ins@maths.warwick.ac.uk

Malaria

Channelling nutrients
Kiaran Kirk

Malaria, an infectious disease responsi-
ble for an estimated 300 million to
500 million clinical cases and 1.5 mil-

lion to 2.7 million human deaths each year1,
is caused by a single-celled parasite that
invades the red blood cells of its host. In the
48 hours after it invades a red blood cell, the
parasite grows to many times its original size,
and then divides to produce 20–30 new para-
sites. To fuel this high rate of growth and
multiplication, the malaria parasite needs
nutrients from outside the infected cell.
However, a normal red blood cell is unable to
take up at least some nutrients fast enough to
satisfy the parasite’s voracious appetite. On
page 1001 of this issue2, Desai and colleagues
provide new insights into how this problem
is solved. They describe a versatile channel

that is found in the outer membrane of
infected (but not uninfected) red blood cells,
and which helps to supply nutrients to the
hungry parasite.

It has long been known that following 
the invasion of a human red blood cell by
Plasmodium falciparum — the most virulent
of the four malaria parasites that are infec-
tious to humans — the membrane of the
infected cell undergoes a dramatic increase 
in its permeability to a range of small sol-
utes, both charged and uncharged3–6. The
pathways responsible for the increased 
permeability have previously been shown 
to have a strong preference for negatively
charged ions (anions) over positively charged
ions (cations), and to be blocked by drugs
known to inhibit anion-selective channels6
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