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The quotes �

} Science, wisdom, and counting

} Surprise, information, and miracles

} Information (and hope)

} H (or S) for Entropy

To topics ←
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Science, wisdom, and
counting �

“Science is organized knowledge. Wisdom is
organized life.”

- Immanuel Kant

“My own suspicion is that the universe is not
only stranger than we suppose, but stranger
than we can suppose.”

- John Haldane

“Not everything that can be counted counts,
and not everything that counts can be
counted.”

- Albert Einstein (1879-1955)

“The laws of probability, so true in general,
so fallacious in particular .”

- Edward Gibbon
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Surprise, information, and
miracles �

“The opposite of a correct statement is a

false statement. The opposite of a profound

truth may well be another profound truth.”

- Niels Bohr (1885-1962)

“I heard someone tried the

monkeys-on-typewriters bit trying for the

plays of W. Shakespeare, but all they got was

the collected works of Francis Bacon.”

- Bill Hirst

“There are only two ways to live your life.

One is as though nothing is a miracle. The

other is as though everything is a miracle.”

- Albert Einstein (1879-1955)
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Mathematics of Information

←
• We would like to develop a usable

measure of the information we get from
observing the occurrence of an event
having probability p . Our first reduction
will be to ignore any particular features of
the event, and only observe whether or
not it happened. Thus we will think of an
event as the observance of a symbol
whose probability of occurring is p. We
will thus be defining the information in
terms of the probability p.

The approach we will be taking here is
axiomatic: on the next page is a list of
the four fundamental axioms we will use.
Note that we can apply this axiomatic
system in any context in which we have
available a set of non-negative real
numbers. A specific special case of
interest is probabilities (i.e., real numbers
between 0 and 1), which motivated the
selection of axioms . . .
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• We will want our information measure

I(p) to have several properties:

1. Information is a non-negative quantity:

I(p) ≥ 0.

2. If an event has probability 1, we get no

information from the occurrence of the

event: I(1) = 0.

3. If two independent events occur

(whose joint probability is the product

of their individual probabilities), then

the information we get from observing

the events is the sum of the two

informations: I(p1 ∗ p2) = I(p1)+ I(p2).

(This is the critical property . . . )

4. We will want our information measure

to be a continuous (and, in fact,

monotonic) function of the probability

(slight changes in probability should

result in slight changes in information).
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• We can therefore derive the following:

1. I(p2) = I(p ∗ p) = I(p) + I(p) = 2 ∗ I(p)

2. Thus, further, I(pn) = n ∗ I(p)

(by induction . . . )

3. I(p) = I((p1/m)m) = m ∗ I(p1/m), so

I(p1/m) = 1
m ∗ I(P ) and thus in general

I(pn/m) =
n

m
∗ I(p)

4. And thus, by continuity, we get, for

0 < p ≤ 1, and a > 0 a real number:

I(pa) = a ∗ I(p)

• From this, we can derive the nice

property:

I(p) = − logb(p) = logb(1/p)

for some base b.
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• Summarizing: from the four properties,

1. I(p) ≥ 0

2. I(p1 ∗ p2) = I(p1) + I(p2)

3. I(p) is monotonic and continuous in p

4. I(1) = 0

we can derive that

I(p) = logb(1/p) = − logb(p),

for some positive constant b. The base b

determines the units we are using.

We can change the units by changing the

base, using the formulas, for b1, b2, x > 0,

x = b
logb1

(x)
1

and therefore

logb2(x) = logb2(b
logb1

(x)
1 ) = (logb2(b1))(logb1(x)).
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• Thus, using different bases for the

logarithm results in information measures

which are just constant multiples of each

other, corresponding with measurements

in different units:

1. log2 units are bits (from ’binary’)

2. log3 units are trits(from ’trinary’)

3. loge units are nats (from ’natural

logarithm’) (We’ll use ln(x) for loge(x))

4. log10 units are Hartleys, after an early

worker in the field.

• Unless we want to emphasize the units,

we need not bother to specifiy the base

for the logarithm, and will write log(p).

Typically, we will think in terms of log2(p).
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• For example, flipping a fair coin once will
give us events h and t each with
probability 1/2, and thus a single flip of a
coin gives us − log2(1/2) = 1 bit of
information (whether it comes up h or t).

Flipping a fair coin n times (or,
equivalently, flipping n fair coins) gives us
− log2((1/2)n) = log2(2

n) = n ∗ log2(2) =
n bits of information.

We could enumerate a sequence of 25
flips as, for example:

hthhtththhhthttththhhthtt

or, using 1 for h and 0 for t, the 25 bits

1011001011101000101110100.

We thus get the nice fact that n flips of a
fair coin gives us n bits of information,
and takes n binary digits to specify. That
these two are the same reassures us that
we have done a good job in our definition
of our information measure . . .
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Information (and hope) �

“In Cyberspace, the First Amendment is a

local ordinance.”

- John Perry Barlow

“Groundless hope, like unconditional love, is

the only kind worth having.”

- John Perry Barlow

“The most interesting facts are those which

can be used several times, those which have a

chance of recurring. . . .Which, then, are the

facts that have a chance of recurring? In the

first place, simple facts.”

H. Poincare, 1908
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Some entropy theory ←

• One question we might ask here is, what

is the average amount of information we

will get (per observation) from observing

events from a probability distribution P?

In particular, what is the expected value

of the information?

• Suppose we have a discrete probability

distribution P = {p1, p2, . . . , pn}, with

pi ≥ 0 and
∑n

i=1 pi = 1, or a continuous

distribution p(x) with p(x) ≥ 0 and∫
p(x)dx = 1, we can define the expected

value of an associated discrete set

F = {f1, f2, . . . , fn} or function F (x) by:

< F >=
n∑

i=1

fipi

or

< F (x) >=
∫

F (x)p(x)dx.
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With these ideas in mind, we can define

the entropy of a distribution by:

H(P ) =< I(p) > .

In other words, we can define the entropy

of a probability distribution as the

expected value of the information of the

distribution.

In particular, for a discrete distribution

P = {p1, p2, . . . , pn}, we have the entropy:

H(P ) =
n∑

i=1

pi log

(
1

pi

)
.
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Several questions probably come to mind at

this point:

• What properties does the function H(P )

have? For example, does it have a

maximum, and if so where?

• Is entropy a reasonable name for this? In

particular, the name entropy is already in

use in thermodynamics. How are these

uses of the term related to each other?

• What can we do with this new tool?

• Let me start with an easy one. Why use

the letter H for entropy? What follows is

a slight variation of a footnote, p. 105, in

the book Spikes by Rieke, et al. :-)
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H (or S) for Entropy �

“The enthalpy is [often] written U. V is the
volume, and Z is the partition function. P
and Q are the position and momentum of a
particle. R is the gas constant, and of course
T is temperature. W is the number of ways
of configuring our system (the number of
states), and we have to keep X and Y in case
we need more variables. Going back to the
first half of the alphabet, A, F, and G are all
different kinds of free energies (the last
named for Gibbs). B is a virial coefficient or a
magnetic field. I will be used as a symbol for
information; J and L are angular momenta. K
is Kelvin, which is the proper unit of T. M is
magnetization, and N is a number, possibly
Avogadro’s, and O is too easily confused with
0. This leaves S . . .” and H. In Spikes they
also eliminate H (e.g., as the Hamiltonian). I,
on the other hand, along with Shannon and
others, prefer to honor Hartley. Thus, H for
entropy . . .
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A Maximum Entropy

Principle ←

• Suppose we have a system for which we

can measure certain macroscopic

characteristics. Suppose further that the

system is made up of many microscopic

elements, and that the system is free to

vary among various states. Then (a

generic version of) the Second Law of

Thermodynamics says that with

probability essentially equal to 1, the

system will be observed in states with

maximum entropy.

We will then sometimes be able to gain

understanding of the system by applying a

maximum information entropy principle

(MEP), and, using Lagrange multipliers,

derive formulae for aspects of the system.
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• Suppose we have a set of macroscopic

measurable characteristics fk,

k = 1,2, . . . , M (which we can think of as

constraints on the system), which we

assume are related to microscopic

characteristics via:∑
i

pi ∗ f
(k)
i = fk.

Of course, we also have the constraints:

pi ≥ 0, and∑
i

pi = 1.

We want to maximize the entropy,∑
i pi log(1/pi), subject to these

constraints. Using Lagrange multipliers λk

(one for each constraint), we have the

general solution:

pi = exp

−λ−
∑
k

λkf
(k)
i

 .
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If we define Z, called the partition

function, by

Z(λ1, . . . , λM) =
∑
i

exp

−∑
k

λkf
(k)
i

 ,

then we have eλ = Z, or λ = ln(Z).
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Application: Economics I (a

Boltzmann Economy) ←

• Our first example here is a very simple

economy. Suppose there is a fixed

amount of money (M dollars), and a fixed

number of agents (N) in the economy.

Suppose that during each time step, each

agent randomly selects another agent and

transfers one dollar to the selected agent.

An agent having no money doesn’t go in

debt. What will the long term (stable)

distribution of money be?

This is not a very realistic economy –

there is no growth, only a redistribution

of money (by a random process). For the

sake of argument, we can imagine that

every agent starts with approximately the

same amount of money, although in the

long run, the starting distribution

shouldn’t matter.
20



• For this example, we are interested in

looking at the distribution of money in

the economy, so we are looking at the

probabilities {pi} that an agent has the

amount of money i. We are hoping to

develop a model for the collection {pi}.

If we let ni be the number of agents who

have i dollars, we have two constraints:∑
i

ni ∗ i = M

and ∑
i

ni = N.

Phrased differently (using pi = ni
N ), this

says ∑
i

pi ∗ i =
M

N

and ∑
i

pi = 1.
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• We now apply Lagrange multipliers:

L =
∑
i

pi ln(1/pi) − λ

∑
i

pi ∗ i−
M

N


− µ

∑
i

pi − 1

 ,

from which we get

∂L

∂pi
= −[1 + ln(pi)]− λi− µ = 0.

We can solve this for pi:

ln(pi) = −λi− (1 + µ)

and so

pi = e−λ0e−λi

(where we have set 1 + µ ≡ λ0).
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• Putting in constraints, we have

1 =
∑
i

pi

=
∑
i

e−λ0e−λi

= e−λ0
M∑

i=0

e−λi,

and
M

N
=

∑
i

pi ∗ i

=
∑
i

e−λ0e−λi ∗ i

= e−λ0
M∑

i=0

e−λi ∗ i.

We can approximate (for large M)

M∑
i=0

e−λi ≈
∫ M

0
e−λxdx ≈

1

λ
,

and

M∑
i=0

e−λi ∗ i ≈
∫ M

0
xe−λxdx ≈

1

λ2
.
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From these we have (approximately)

eλ0 =
1

λ
and

eλ0
M

N
=

1

λ2
.

From this, we get

λ =
N

M
= e−λ0,

and thus (letting T = M
N ) we have:

pi = e−λ0e−λi

=
1

T
e−

i
T .

This is a Boltzmann-Gibbs distribution,
where we can think of T (the average
amount of money per agent) as the
“temperature,” and thus we have a
“Boltzmann economy” . . .

Note: this distribution also solves the
functional equation

p(m1)p(m2) = p(m1 + m2).
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• This example, and related topics, are

discussed in

Statistical mechanics of money

by Adrian Dragulescu and Victor M.

Yakovenko,

http://arxiv.org/abs/cond-mat/0001432

and

Statistical mechanics of money: How

saving propensity affects its distribution

by Anirban Chakraborti and Bikas K.

Chakrabarti

http://arxiv.org/abs/cond-mat/0004256
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Fit of this model to the Real

WorldTM ←
• How well does this model seem to fit to

the Real World?

For a fairly large range of individuals, it
actually does a decent job. Here is a
graphical representation of U.S. census
data for 1996:

The black line is p(x) = 1
Re
−x
R .
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• However, for the wealthy it doesn’t do

such a good job. Here are some graphical

representations of U.K. and U.S. data for

1996-2001:

As can be seen on the left graph, the

wealth distribution for the U.K. wealthy in

1996 is close to a linear fit in log− log

coordinates.

Can we modify the model somewhat to

capture other characteristics of the data?

27



• There are a wide variety of important

distributions that are observed in data

sets. For example:

– Normal (gaussian) distribution:

p(x) ∼ exp(−
x2

2σ2
)

Natural explanation: Central limit

theorem; sum of random variables

(with finite second moment):

Xn =
n∑

i=1

xi

Many applications:

∗ Maxwell: distribution of velocities of

gas particles

∗ IQ

∗ heights of individuals

Distribution is thin tailed – no one is

20 feet tall . . .
28



– Exponential distribution:

p(x) ∼ exp(−x/x0)

Natural explanation 1: Survival time

for constant probability decay.

Natural explanation 2: Equlibrium

statistical mechanics (see above –

maximum entropy subject to constraint

on mean).

Many applications:

∗ Radioactive decay.

∗ Equilibrium statistical mechanics

(Boltzmann-Gibbs distribution)

Characteristic scale is x0; distribution

is thin tailed.

– Power law (see below):

p(x) ∼ x−α
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A bit about Power Laws ←

• Various researchers in various fields at

various times have observed that many

datasets seem to reflect a relationship of

the form

p(x) ∼ x−α

for a fairly broad range of values of x.

These sorts of data relations are often

called power laws, and have been the

subject of fairly intensive interest and

study.

An early researcher, Vilfredo Pareto,

observed in the late 1800s that pretty

uniformly across geographical locations,

wealth was distributed through the

population according to a power law, and

hence such distributions are often called

Pareto distributions.
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A variety of other names have been

applied to these distributions:

– Power law distribution

– Pareto’s law

– Zipf’s law

– Lotka’s law

– Bradford’s law

– Zeta distribution

– Scale free distribution

– Rank-size rule

My general rule of thumb is that if

something has lots of names, it is likely to

be important . . .

31



• These distributions have been observed
many places (as noted, for example, in
Wikipedia):

– Frequencies of words in longer texts

– The size of human settlements (few
cities, many hamlets/villages)

– File size distribution of Internet traffic
which uses the TCP protocol (many
smaller files, few larger ones)

– Clusters of Bose-Einstein condensate
near absolute zero

– The value of oil reserves in oil fields (a
few large fields, many small fields)

– The length distribution in jobs
assigned supercomputers (a few large
ones, many small ones)

– The standardized price returns on
individual stocks
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– Size of sand particles

– Number of species per genus (please

note the subjectivity involved: The

tendency to divide a genus into two or

more increases with the number of

species in it)

– Areas burnt in forest fires

• There are a variety of important

properties of power laws:

– Distribution has fat / heavy tails

(extreme events are more likely than

one might expect . . . ). Stock market

volatility; sizes of storms / floods, etc.

– A power law is a linear relation

between logarithms:

p(x) = Kx−α

log(p(x)) = −α log(x) + log(K)
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– Power laws are scale invariant:

Sufficient:

p(x) = Kx−α

x → cx

p(x) → Kc−αx−α = c−αp(x)

Necessary: Scale invariant is defined as

p(cx) = K(c)p(x)

Power law is the only solution (0 and 1

are trivial solutions).

• Power laws are actually asymptotic

relations. We can’t define a power law on

[0,∞]:

If α > 1, not integrable at 0.

If α <= 1, not integrable at ∞.

Thus, when we say something is a power

law, we mean either within a range, or as

x→ 0 or as x→∞.
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• Moments: power laws have a threshold

above which moments don’t exist. For

p(x) ∼ x−(α+1), when α > m,

γ(m) =
∫ ∞
a

xmp(x)dx

=
∫ ∞
a

xmx−(α+1)dx

= ∞

• The lack of moments is conserved under

aggregation . . . If α(x) is the tail exponent

of the random variable x (the value above

which moments don’t exist), then

α(x + y) = min(α(x), α(y))

α(xy) = min(α(x), α(y))

α(xk) = α(x)/k.
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• Power laws are generic for heavy / fat

tailed distributions. In other words, any

“reasonable” distribution with fat tails

(i.e., with moments that don’t exist) is a

power law:

P (X > x) = 1−Φα(x)

= 1− exp(−x−α)

≈ 1− (1− x−α)

= x−α

(there is some discussion of extreme value

distributions that goes here, with

discussion of Fréchet, Weibull, and

Gumbel distributions – specifically

Fréchet distributions (with fat tails)

. . . perhaps another place or time).
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• Some mechanism for generating power

laws:

– Critical points and deterministic

dynamics

– Non-equilibrium statistical mechanics

– Random processes

– Mixtures

– Maximization principles

– Preferential attachment

– Dimensional constraints
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• Multiplicative (random) processes

generate log-normal distributions, which

can look like power law distributions

across various ranges of the variable. If

a(t) is a random variable:

x(t + 1) = a(t)x(t)

x(t) =
t−1∏
i=0

a(i)x(0)

log(x(t)) =
t−1∑
i=0

log(a(i)) + log(x(0))

f(x) =
1√

2πσx
e−(logx−µ)2/2σ2

log(f(x)) = −
(log(x))2

2σ2
+ (

µ

σ2
− 1) log(x) + const

In particular, if σ is large in comparison

with log(x), then it will look like

log(f(x)) ≈ log(x−1),

which is a one-over-x power law

distribution . . .
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• Other distributions that have power-law

appearing regions:

– Mixed multiplicative / additive

processes (Kesten processes):

x(t + 1) = a(t)x(t) + b(t)

– Stable multiplicative random walk with

reflecting barrier.

Both of these will look log-normal in their

bodies, and like power laws in their tails.

(Various pieces of this section draw from

lectures / notes by Doyne Farmer on

power laws in financial markets – my

thanks to him . . . )
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Application: Economics II (a

power law) ←

• Suppose that a (simple) economy is made

up of many agents a, each with wealth at

time t in the amount of w(a, t). (I’ll leave

it to you to come up with a reasonable

definition of “wealth” – of course we will

want to make sure that the definition of

“wealth” is applied consistently across all

the agents.) We can also look at the total

wealth in the economy W (t) =
∑

a w(a, t).

For this example, we are interested in

looking at the distribution of wealth in

the economy, so we will assume there is

some collection {wi} of possible values for

the wealth an agent can have, and

associated probabilities {pi} that an agent

has wealth wi. We are hoping to develop

a model for the collection {pi}.
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• In order to apply the maximum entropy

principle, we want to look at global

(aggregate/macro) observables of the

system that reflect (or are made up of)

characteristics of (micro) elements of the

system.

For this example, we can look at the

growth rate of the economy. A reasonable

way to think about this is to let

Ri = wi(t1)/wi(t0) and R = W (t1)/W (t0)

(where t0 and t1 represent time steps of

the economy). The growth rate will then

be ln(R). We then have the two

constraints on the pi:∑
i

pi ∗ ln(Ri) = ln(R)

and ∑
i

pi = 1.
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• We now apply Lagrange multipliers:

L =
∑
i

pi ln(1/pi) − λ

∑
i

pi ln(Ri)− ln(R)


− µ

∑
i

pi − 1

 ,

from which we get

∂L

∂pi
= −[1 + ln(pi)]− λ ln(Ri)− µ = 0.

We can solve this for pi:

pi = e−λ0e−λ ln(Ri) = e−λ0R−λ
i

(where we have set 1 + µ ≡ λ0).

Solving, we get λ0 = ln(Z(λ)), where

Z(λ) ≡
∑

i R−λ
i (the partition function)

normalizes the probability distribution to

sum to 1. From this we see the power law

(for λ > 1):

pi =
R−λ

i

Z(λ)
.
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• We might actually like to calculate

specific values of λ, so we will do the

process again in a continuous version. In

this version, we will let R = w(T )/w(0) be

the relative wealth at time T. We want to

find the probability density function f(R),

that is:

max
{f}

H(f) = −
∫ ∞
1

f(R) ln(f(R))dR,

subject to ∫ ∞
1

f(R)dR = 1,∫ ∞
1

f(R) ln(R)dR = C ln(R),

where C is the average number of

transactions per time step.

We need to apply the calculus of

variations to maximize over a class of

functions.
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When we are solving an extremal problem

of the form∫
F [x, f(x), f ′(x)]dx,

we work to solve

∂F

∂f(x)
−

d

dx

(
∂F

∂f ′(x)

)
= 0.

Our Lagrangian is of the form

L ≡ −
∫ ∞
1

f(R) ln(f(R))dr − µ

(∫ ∞
1

f(R)dR− 1
)

− λ

(∫ ∞
1

f(R) ln(R)dR− C ∗ ln(R)
)

.

Since this does not depend on f ′(x), we

look at:

∂[−f(R) ln f(R)− µ(f(R)− 1)− λ(f(R) lnR−R)]

∂f(R)

= 0

from which we get

f(R) = e−(λ0−λ ln(R)) = R−λe−λ0,

where again λ0 ≡ 1 + µ.
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We can use the first constraint to solve

for eλ0:

eλ0 =
∫ ∞
1

R−λdR =

[
R−λ+1

1− λ

]∞
1

=
1

λ− 1
,

assuming λ > 1. We therefore have a

power law distribution for wealth of the

form:

f(R) = (λ− 1)R−λ.

To solve for λ, we use:

C ∗ ln(R) = (λ− 1)
∫ ∞
1

R−λ ln(R)dR.

Using integration by parts, we get

C ∗ ln(R) = (λ− 1)

[
ln(R)

R1−λ

1− λ

]∞
1

−(λ− 1)
∫ ∞
1

R−λ

1− λ
dR

= (λ− 1)

[
ln(R)

R1−λ

1− λ

]∞
1

+

[
R1−λ

1− λ

]∞
1

.
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By L’Hôpital’s rule, the first term goes to

zero as R→∞, so we are left with

C ∗ ln(R) =

[
R1−λ

1− λ

]∞
1

=
1

λ− 1
,

or, in other terms,

λ− 1 = C ∗ ln(R−1).

For much more discussion of this

example, see the paper A Statistical

Equilibrium Model of Wealth Distribution

by Mishael Milakovic, February, 2001,

available on the web at:

http://astarte.csustan.edu/˜ tom/SFI-

CSSS/Wealth/wealth-Milakovic.pdf
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