
A Little Probability

. . .

. . .

Coding and Information Theory

Fall, 2004

Tom Carter

http://astarte.csustan.edu/˜ tom/

October, 2004

1



Some probability
background

• There are two notions of the probability
of an event happening. The two general
notions are:

1. A frequentist version of probability:

In this version, we assume we have a
set of possible events, each of which
we assume occurs some number of
times. Thus, if there are N distinct
possible events (x1, x2, . . . , xN), no two
of which can occur simultaneously, and
the events occur with frequencies
(n1, n2, . . . , nN), we say that the
probability of event xi is given by

P (xi) =
ni∑N

j=1 nj

This definition has the nice property
that

N∑
i=1

P (xi) = 1
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2. An observer relative version of

probability:

In this version, we take a statement of

probability to be an assertion about

the belief that a specific observer has

of the occurrence of a specific event.

Note that in this version of probability,

it is possible that two different

observers may assign different

probabilities to the same event.

Furthermore, the probability of an

event, for me, is likely to change as I

learn more about the event, or the

context of the event.
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3. In some (possibly many) cases, we may

be able to find a reasonable

correspondence between these two

views of probability. In particular, we

may sometimes be able to understand

the observer relative version of the

probability of an event to be an

approximation to the frequentist

version, and to view new knowledge as

providing us a better estimate of the

relative frequencies.
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• I won’t go through much, but some
probability basics, where a and b are
events:
P (not a) = 1− P (a).
P (a or b) = P (a) + P (b)− P (a and b).
We will often denote P (a and b) by
P (a, b). If P (a, b) = 0, we say a and b are
mutually exclusive.

• Conditional probability:

P (a|b) is the probability of a, given that
we know b. The joint probability of both
a and b is given by:

P (a, b) = P (a|b)P (b).

Since P (a, b) = P (b, a), we have Bayes’
Theorem:

P (a|b)P (b) = P (b|a)P (a),

or

P (a|b) =
P (b|a)P (a)

P (b)
.
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• If two events a and b are such that

P (a|b) = P (a),

we say that the events a and b are

independent. Note that from Bayes’

Theorem, we will also have that

P (b|a) = P (b),

and furthermore,

P (a, b) = P (a|b)P (b) = P (a)P (b).

This last equation is often taken as the

definition of independence.
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• A quick example:

Suppose that you are asked by the

government to help them understand the

results of a “terrorist screening system”

they are developing. They have been told

that the system is 99.9% accurate. What

is the probability that when the system

identifies a potential “terrorist” that they

have actually found one?
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• You do some research, and find out that

independent estimates put the number of

actual “terrorists” in the US at around

250. The creators of the system assert

that the system is 99.9% accurate. You

push the question, and find that they say

that one tenth of one percent of the time,

the test falsely clears someone who is a

“terrorist”, and one tenth of one percent

of the time the system falsely reports

someone to be a “terrorist” when they

are not. If the system identifies someone

as a “terrorist,” how seriously should the

government take the identification? Given

this much information, what can you

calculate as the probability the individual

is a “terrorist”?
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In general, there are four possible

situations for an individual being

identified:

1. Test positive (Tp), and are a

“terrorist” (T).

2. Test negative (Tn), and are not a

“terrorist” (NT).

3. Test positive (Tp), and are not a

“terrorist” (NT).

4. Test negative (Tn), and are a

“terrorist” (T).
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We would like to calculate the probability

someone is a “terrorist” (T) given, that

they have been identified as such by the

system (Tp):

P (T |Tp).

We can do this using Bayes’ Theorem.

We can calculate:

P (T |Tp) =
P (Tp|T ) ∗ P (T )

P (Tp)
.

We need to figure out the three items on

the right side of the equation. We can do

this by using the information given.
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Suppose the screening test was done on

250,000,000 people in the US. Out of

these 2.5 ∗ 108 people, we expect there to

be 250 people who are “terrorists”, and

249,999,750 people who are not.

According to the creators of the system,

we would expect the test results to be:

– Test positive (Tp), and are “terrorists”

(T): 250 people.

– Test negative (Tn), and are not

“terrorists” (NT):

0.999∗249,999,750 = 249,749,750 people.

– Test positive (Tp), and are not

“terrorists” (NT):

0.001 ∗ 249,999,750 = 250,000 people.

– Test negative (Tn), and are

“terrorists” (T): 0 people.
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Now let’s put the the pieces together:

P (T ) =
250

250,000,000

= 10−6

P (Tp) =
250 + 250,000

250,000,000

=
250,250

250,000,000

= 0.001001

P (Tp|T ) = 0.999
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Thus, our calculated probability that
someone identified as a “terrorist”
actually is one:

P (T |Tp) =
P (Tp|T ) ∗ P (T )

P (Tp)

=
0.999 ∗ 10−6

0.001001

=
9.99 ∗ 10−7

1.001 ∗ 10−3

= 9.98002 ∗ 10−4

< 10−3 = .001

In other words, an individual identified by
the system as a “terrorist”, with a test
that is promised to be 99.9% correct, has
less that one chance in 1000 of actually
being one! Another way of saying it is
that for every one “terrorist” that is
actually identified, 1000 innocent people
are incorrectly identified as being one.
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• There are a variety of questions we could

ask now, such as, how accurate would the

system have to be for there to be a

greater than 50% probability that

someone identified as a “terrorist”

actually is one?

For this, we need fewer false positives

than true positives. Thus, in the example,

we would need fewer than 250 false

positives out of the 249,999,750 people

who are not. In other words, the

proportion of those who are not

“terrorists” for whom the system would

have to be correct would need to be

greater than:

249,999,500

249,999,750
= 99.9999%!!
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• Another question we could ask is, “How

prevalent would “terrorists” have to be in

order for a 99.9% accurate test (0.1%

false positive and 0.1% false negative) to

give a greater than 50% probability of

actually being a “terrorist” when

identified as one?”

Again, we need fewer false positives than

true positives. We would therefore need

the actual occurrence to be greater than

1 in 1000 (each false positive would be

matched by at least one true positive, on

average) – in other words, there would

have to be about 250,000 “terrorists” in

the US!
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• Another example: consider another

situation, with a test that is not so

accurate. Suppose the test were 80%

accurate (20% false positive and 20%

false negative). Suppose that we are

testing for a condition expected to affect

1 person in 100. What would be the

probability that a person testing positive

actually has the condition?

We can do the same sort of calculations.
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Let’s use 1000 people this time. Out of

this sample, we would expect 10 to have

the condition.

– Test positive (Tp), and have the

condition (Ha):

0.80 ∗ 10 = 8 people.

– Test negative (Tn), and don’t have

the condition (Na):

0.80 ∗ 990 = 792 people.

– Test positive (Tp), and don’t have the

condition (Na):

0.20 ∗ 990 = 198 people.

– Test negative (Tn), and have the

condition (Ha):

0.20 ∗ 10 = 2 people.
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Now let’s put the the pieces together:

P (Ha) =
1

100

= 10−2

P (Tp) =
8 + 198

103

=
206

103

= 0.206

P (Tp|Ha) = 0.80
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Thus, our calculated probability that a

person testing positive actually has the

condition is:

P (Ha|Tp) =
P (Tp|Ha) ∗ P (Ha)

P (Tp)

=
0.80 ∗ 10−2

0.206

=
8 ∗ 10−3

2.06 ∗ 10−1

= 3.883495 ∗ 10−2

< .04

In other words, one who has tested

positive, with a test that is 80% correct,

has less that one chance in 25 of actually

having this condition. (Imagine for a

moment, for example, that this is a drug

test being used on employees of some

corporation . . . )
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• We could ask the same kinds of questions

we asked before:

1. How accurate would the test have to

be to get a better than 50% chance of

actually having the condition when

testing positive?

(99%)

2. For an 80% accurate test, how

frequent would the condition have to

be to get a better than 50% chance?

(1 in 5)
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• Some questions:

1. Are these examples realistic? If not,

why not?

2. What sorts of things could we do to

improve our results?

3. Would it help to repeat the test? For

example, if the probability of a false

positive is 1 in 100, would that mean

that the probability of two false

positives on the same person would be

1 in 10,000 ( 1
100 ∗ 1

100)? If not, why

not?

4. In the case of a medical condition such

as a genetic anomaly, it is likely that

the test would not be applied

randomly, but would only be ordered if

there were other symptoms suggesting

the anomaly. How would this affect

the results?
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