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What is Clustering? ←

• Many real-world data sets consist of (or refer to) collections

of entities of some general type. Some example data sets

might be:

– Points in space (e.g., a set of (x, y) coordinates)

– Populations of people (e.g., census data . . . )

– Financial instruments (e.g., stocks, with data set the

daily closing prices)

– Collections of texts (e.g., a set of emails, or blog posts,

or . . . )

– A social network (e.g., Facebook, or phone contacts)
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Our data sets give us views into collections of entities, and
we would like to use the data sets to better understand the
entities . . .

• Often we can think of our data set as telling us something
about the ”relatedness” of our collection of entities. In
some cases, the ”relatedness” might be very simply and
directly represented in the data set. For example, on
Facebook, two members might be related if they are
”friends” of each other. Two emails might be related if
they are from the same person. In the census, two people
might be ”related” if they live in the same town, or if they
have the same job, or etc. Two web pages might be related
if one contains a link to the other.

More generally, we may be able to develop a ”relatedness”
metric associated with the data set. For example, the
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relatedness between two stocks might be the degree to

which their prices are correlated with each other over time.

The relatedness between two texts might be the number of

distinct words they have in common.

• One useful starting point to understanding such data sets is

to look for subsets of the collection of entities which are

more closely related to each other than they are to other

members of the collection. We can think of such closely

related subsets as ”clusters”.

Our goal, then, would be to find (automated or

algorithmic) ways to find such clusters in our data sets. If

we are lucky, we can also develop techniques for visualizing

our data set through the lens of the clusters we have found.

For example, we might develop a graphical display of the
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data set where things in a particular cluster are near each

other, or have the same color.

In the case of very large data sets, we can use clustering to

reduce the effective size (or dimensionality) of the data set

by collapsing clusters into single points, and proceeding

from there with our analysis. There are even likely to be

times when we want to iterate this process . . .

The general approach I’ll briefly describe here is sometimes

called ”spectral clustering.” It involves representing the

”relatedness” as a weighted graph ( or network), and

applying various mathematical/algorithmic techniques. We

can represent the graph as an ”adjacency” matrix – i.e., we

can construct a symmetric square matrix A from the data

set where A(i, j) is the ”level of relatedness” between

entities i and j. In simple traditional graph theory, two
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nodes (or vertices) are ”related” if there is an edge between

them, and the adjacency matrix has A(i, j) = 1, and 0

otherwise. Many of our examples will be of the more

general ”weighted graph” type.
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An Example ←

• Let’s start with a (relatively) simple example. Consider the
following, a collection of points in 2-dimensional space:
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• Two points in this data set are related by being near each

other. A comparatively naive ”clustering” algorithm might

find this:
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• But we can see that there is more structure to the data set.
We would really like something more like this:

This version of clustering was done via an algorithm in a
general class often called spectral clustering.

10



Spectral Clustering (a general outline)

←

• A general outline of a useful approach to a spectral
clustering is as follows:

– Through some mechanism, generate an ”adjacency”
matrix. I’ll sometimes call this an ”affinity” matrix. This
will be an n x n matrix, where each entry is an ”affinity”
between a pair of elements in the collection we are
studying.

– Massage the affinity matrix appropriately ( art, not
science :-)

– Compute the (a . . . ) graph Laplacian from the affinity
matrix (see below)
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– Calculate eigenvalues and associated eigenvectors from

the graph Laplacian

– Choose an appropriate number k of clusters (art, not

science :-)

– Select the eigenvectors associated with the largest k

eigenvalues

– Make an n x k matrix with those eigenvectors

– Perform k-means clustering on the rows of the n x k

matrix

– Display the results, lather, rinse, and repeat . . .

12



Graph Laplacian(s) ←

• The general idea of the ”graph Laplacian” is to derive a

new matrix from the adjacency matrix that can tell us

something about the structure of the graph. These have

enough similarity to the Laplacian found elsewhere in

mathematics that they share the name. There are actually

several variations in use. Some versions are outlined in the

following. In practice, it is typical for people to work with

the eigenvalues and eigenvectors of these derived matrices.

– Let A (with entries A(i, j)) be the adjacency (or affinity)

matrix. Note: in the general case, these are frequently

labeled W (with entries W (i, j)), the weight matrix.
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– We now compute the (generalized) degrees D of the
nodes in the graph:

D(i, i) =
∑
j

A(i, j)

D(i, j) = 0 if i 6= j

A convenient abbreviation is D(i) = D(i, i).

In the simple case of an unweighted graph, D(i) tells
how many other nodes are connected to node i. In the
more general case, it tells the total weight of edges
emanating from a node.

– The easiest version of a graph laplacian is

L = D −A
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– A second version is often called a ”normalized graph

laplacian”:

Lnorm1 = I −D−
1
2AD−

1
2

Or, in coordinate form:

Lnorm1(i, j) =


1 if i = j and D(i) 6= 0

− A(i,j)√
D(i)∗D(j)

if i 6= j andA(i, j) 6= 0

0 otherwise.
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– A slightly simpler, but still useful, version of this is:

Lnorm2 = D−
1
2AD−

1
2

In other words,

Lnorm2(i, j) =
A(i, j)√
D(i)D(j)

– An alternate version of a normalized laplacian is:

Lnorm3 = D−1A

This version has the nice property that if we think about

a random walk on the graph, with the likelihood of
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moving from node i to node j being proportional to

A(i, j), then the corresponding matrix of probabilities will

be:

P = D−1A

• more later . . .

17



←

References

[1] Chung, Fan,
Course notes for UCSD Math 261C (Probabilistic Combinatorics and
Algorithms III), Spring 2010
http://math.ucsd.edu/ jthughes/Math261C/Math261C.html

[2] Chung, Fan,
Graph Theory in the Information Age, Notices of the AMS, Vol. 57,
No. 6, pp. 726-732
http://www.math.ucsd.edu/ fan/wp/graph.pdf

[3] Horaud, Radu,
A Short Tutorial on Graph Laplacians, Laplacian Embedding, and
Spectral Clustering
http://perception.inrialpes.fr/˜
Boyer/ReadingGroup/GraphLaplacian-tutorial.pdf

18

http://math.ucsd.edu/~jthughes/Math261C/Math261C.html
http://www.math.ucsd.edu/~fan/wp/graph.pdf
http://perception.inrialpes.fr/~Boyer/ReadingGroup/GraphLaplacian-tutorial.pdf
http://perception.inrialpes.fr/~Boyer/ReadingGroup/GraphLaplacian-tutorial.pdf


[4] von Luxburg, Ulrike,
A Tutorial on Spectral Clustering
http://people.kyb.tuebingen.mpg.de/ule/
publications/publication downloads/Luxburg07 tutorial.pdf

[5] Spielman, Daniel, and Srivastava, Nikhil,
Graph Sparsification by Effective Resistances
Abstract: http://arxiv.org/abs/0803.0929
Full text: http://arxiv.org/pdf/0803.0929v4

[6] Vejmelka, Martin,
Spectral Graph Clustering
http://ai.ms.mff.cuni.cz/ sui/Seminar2009MartinVejmelka.pdf

[7] Ng, Andrew, Jordan, Michael, and Weiss, Yair,
On Spectral Clustering: Analysis and an Algorithm
http://www.stat.washington.edu/wxs/Stat593-s03/Literature/ng-
jordan-weiss-nips01.pdf

[8] Zhu, Xiaojin,
Course notes, Advanced Natural Language Processing
http://pages.cs.wisc.edu/ jerryzhu/cs769.html

To top ←
19

http://people.kyb.tuebingen.mpg.de/ule/publications/publication_downloads/Luxburg07_tutorial.pdf
http://people.kyb.tuebingen.mpg.de/ule/publications/publication_downloads/Luxburg07_tutorial.pdf
http://arxiv.org/abs/0803.0929
http://arxiv.org/pdf/0803.0929v4
http://ai.ms.mff.cuni.cz/~sui/Seminar2009MartinVejmelka.pdf
http://www.stat.washington.edu/wxs/Stat593-s03/Literature/ng-jordan-weiss-nips01.pdf
http://www.stat.washington.edu/wxs/Stat593-s03/Literature/ng-jordan-weiss-nips01.pdf
http://pages.cs.wisc.edu/~jerryzhu/cs769.html

	What is Clustering?
	An Example
	Spectral Clustering (a general outline)
	Graph Laplacian(s)
	References

