Fractional derivatives (just for fun ...)

Complex Systems Summer School, Santa Fe

Tom Carter
http://cogs.csustan.edu/~ tom/

$$
\text { June 20, } 2001
$$

How would one define:

$$
\frac{d^{a}(f(t))}{d t^{a}}
$$

For an arbitrary real (or even complex) number a ?

Note: we probably at least want our new definition to agree with the old one wherever it can, and to have:

$$
\frac{d^{a}}{d t^{a}}\left(\frac{d^{b}(f(t))}{d t^{b}}\right)=\frac{d^{a+b}(f(t))}{d t^{a+b}}
$$

Consider this:

If

$$
F(s)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i s t} d t
$$

is the Fourier transform of the
function $f(t)$, then we have

$$
f(t)=\int_{-\infty}^{\infty} F(s) e^{2 \pi i s t} d s
$$

(The inverse transform of the transform of a function is the original function back again.)

Hence, taking derivatives with respect to t of each side, we have

$$
f^{\prime}(t)=\int_{-\infty}^{\infty} 2 \pi i s F(s) e^{2 \pi i s t} d s
$$

Taking another derivative, we have

$$
f^{\prime \prime}(t)=\int_{-\infty}^{\infty}(2 \pi i s)^{2} F(s) e^{2 \pi i s t} d s
$$

and, in general, for the $n^{t h}$ derivative,

$$
f^{(n)}(t)=\int_{-\infty}^{\infty}(2 \pi i s)^{n} F(s) e^{2 \pi i s t} d s
$$

Homework: Check this.

So, how about if we define:

$$
\frac{d^{a} f(t)}{d t^{a}}=\int_{-\infty}^{\infty}(2 \pi i s)^{a} F(s) e^{2 \pi i s t} d s
$$

Note that for any positive whole number n, this definition agrees with the traditional definition of the derivative.

Quick sanity checks: Do we have

$$
\frac{d^{0} f(t)}{d t^{0}}=f(t) ?
$$

Do we have

$$
\frac{d^{a}}{d t^{a}}\left(\frac{d^{b}(f(t))}{d t^{b}}\right)=\frac{d^{a+b}(f(t))}{d t^{a+b}} ?
$$

What about negative a ? We have that if $G(s)$ is the Fourier transform of $f^{\prime}(t)$, then

$$
G(s)=2 \pi i s F(s)
$$

(homework: check this ...)
and hence:

$$
\begin{aligned}
\frac{d^{-1} f^{\prime}(t)}{d t^{-1}} & =\int_{-\infty}^{\infty}(2 \pi i s)^{-1} G(s) e^{2 \pi i s t} d s \\
& =\int_{-\infty}^{\infty}(2 \pi i s)^{-1}(2 \pi i s) F(s) e^{2 \pi i s t} d s \\
& =\int_{-\infty}^{\infty} F(s) e^{2 \pi i s t} d s \\
& =f(t)
\end{aligned}
$$

In other words, for nice functions
(there may be details to worry about), we have roughly:

$$
\frac{d^{-1} f}{d t^{-1}}=\int f
$$

(i.e., $\frac{d^{-1}}{d t^{-1}}$ acts like the integral ...).
(Note: this means we also got fractional integrals for free, right? :-)

Homework question: How could we interpret

$$
\frac{d^{i} f(t)}{d t^{i}} \quad ?
$$

More homework:

1. Is this operation linear? I.e., do we have:

$$
\frac{d^{a}(c * f(t))}{d t^{a}}=c * \frac{d^{a} f(t)}{d t^{a}}
$$

and

$$
\frac{d^{a}(f(t)+g(t))}{d t^{a}}=\frac{d^{a} f(t)}{d t^{a}}+\frac{d^{a} g(t)}{d t^{a}} ?
$$

2. How does this operation work with products? I.e., what can we say about

$$
\frac{d^{a}(f(t) * g(t))}{d t^{a}} ?
$$

Note: If your response to all this is

"Cool!!!!!"

then you have the makings of a mathematician!
(As you might expect, I won't go into what it means if your response is
"But what is it good for?" - and I'm confident by now that nobody's response is "hunh?" ...)
:-)

