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Discrete logistic map

We all know that the discrete logistic map

Pn+1 = rPn(1− Pn)

exhibits interesting behavior of various sorts for various values
of the parameter r , including chaos, etc.
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Discrete logistic map – bifurcation diagram
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Continuous logistic flow

What kind of behavior can we expect from a continuous version
of a logistic flow:

dP
dt

= rP(1− P) ?
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Continuous logistic flow - solving

Note that this is a non-linear ODE, but fortunately we can
actually integrate . . .

dP
dt

= rP(1− P)

dP
P(1− P)

= rdt

Thus: ∫
dP

P(1− P)
=

∫
rdt

∫
dP

P(1− P)
= rt + c1
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Continuous logistic flow - solving

By partial fractions, we have:

∫
dP
P

+

∫
dP

(1− P)
= rt + c1

log(P)− log(1− P) = rt + c1

log(
P

1− P
) = rt + c1

P
1− P

= ert+c1

P
1− P

= c2ert
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Continuous logistic flow - solving

This gives us:

P = (1− P)c2ert

And thus:

P = c2ert − Pc2ert

P + Pc2ert = c2ert

P(1 + c2ert) = c2ert
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Continuous logistic flow - solving

From this we get:

P =
c2ert

1 + c2ert

Finally, dividing top and bottom by c2ert and simplifying, we
have:

P =
1

1 + ce−rt
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The classic logistic/sigmoid curve

and changes in c and r make minor changes in the behavior
near 0 . . .
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Discrete vs. Continuous

The difference between the behavior of the discrete and
continuous logistic functions can give us some idea of the
significance of working in the discrete regime . . .
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Fin

. . .

Slides for this talk will be available at:
http://csustan.csustan.edu/~tom/SFI-CSSS/2009
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