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What are nonlinear systems? ←

• Let’s start by adding another word to this, and ask the
question, "What are nonlinear dynamical systems?" (and
we’ll go back to front . . . )

A reasonable thing to say is that a system is a collection of
entities that we can treat (for some purpose, in some
context) as a unity of interacting parts or elements. At
various times we will treat various collections of entities as
systems, or subsystems. We may at times ignore certain
elements that might otherwise be included. There will also
often be times when we will engage in abstraction, and
refer to a “system” when we are actually discussing,
manipulating, or analyzing an abstraction from the real
(physical) system we are interested in.
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A dynamical system is one which changes over time. It is
generally not unreasonable to assume that there is some
form of energy flow involved in such a system.

A nonlinear dynamical system is, as the name implies, a
system whose best description (behavior) is not linear.
There are various contexts and forms of description for the
concept linear. We’ll look at a variety of examples as we go
along.
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A Linear Example (string) ←

(a little string theory :-)

• It will be worth our while to have some very specific
examples available, so let’s start with this one – consider a
string stretched tightly between two fixed endpoints:

We can pull the center of the string up:
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At the moment we release it, there will be forces acting on
the string. Let’s focus our attention on the center point of
the string (where we had taken hold of it to pull it up).
There will be forces pulling toward the two fixed ends:

There will be a “net” force acting on the center point of
the string:

Now let’s put a “reference frame” on the system, so we can
make things more explicit.
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We will measure the vertical displacement of the center
point of the string relative to the “resting position,” with
positive up and negative down:

0

+

–

x

At this point we’ll make a set of simplifying assumptions,
and in particular treat this as a linear system (in a sense to
be made more explicit below).
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• Among the assumptions we’ll make are:

– Everything is nicely symmetric (in particular, the force is
exactly vertical).

– The force is very simple (no complications from friction,
etc.).

– The force changes linearly with the displacement of the
center point of the string.

– The motion is always continuous and smooth
(differentiable), and thus, also,

– Newtonian mechanics (and all that that entails, including
all the machinery of the calculus . . . )
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• Now we’ll set this up as a (Newtonian) differential system.
The (vertical) displacement of the center point of the
string will be denoted by x (which we will recall is actually a
function of time t, but we will generally simplify the
notation as x rather than x(t)). We will (often) denote the
derivative of a function with respect to time as

ẋ =
dx(t)

dt
and the second derivative as

ẍ =
d2x(t)

dt2
.

As appropriate, we will refer to velocity and acceleration as

v = ẋ

and

a = v̇ = ẍ.
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For the time being, we will assume a very simple form for
the force on the center point:

F = −x

(Note: these should really be vectors ~F = −~x, but we’ll
keep the notation simple for now . . . ). This is the place at
which we are doing a linear approximation, and thus are
working with a linear dynamical system.

Now we invoke Newton, and his fundamental equation of
motion:

F = ma

(and we’ll use units where m = 1, and thus write F = a).
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• Putting the pieces together, our system is given by the
linear ordinary differential equation:

a = F = −x

or

ẍ = −x

or

ẍ+ x = 0.

We can use the standard machinery of calculus to solve this
differential equation.
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The characteristic polynomial of this differential equation is

z2 + 1 = (z + i)(z − i)

with roots z = i and z = −i. Hence the general form of the
solution is

x = x(t) = b0e
it + b1e

−it.

Now we can remember (use) the definition

ex =
∞∑
n=0

xn

n!
,
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from which we get

eit =
∞∑
n=0

(it)n

n!

= 1 + it−
t2

2!
− i

t3

3!
+
t4

4!
+ · · ·

= 1−
t2

2!
+
t4

4!
− · · ·

+ it− i
t3

3!
+ i

t5

5!
− · · ·

=
∞∑
n=0

(−1)n
t(2n)

(2n)!
+ i

∞∑
n=0

(−1)n
t(2n+1)

(2n+ 1)!

= cos (t) + i sin (t).

Then, using some standard techniques (and observing that
cos (t) and sin (t) are linearly independent), we find that the
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general solution to our system can be written as:

x(t) = c0 cos (t) + c1 sin (t).

Of course, if we didn’t want to be reminded of the general
method of solving linear ordinary differential equations, or
the definition of the exponential function, or Euler’s formula
(eit = cos (t) + i sin (t)), we could have just observed that

d2 cos (t)

dt2
= − cos (t)

and
d2 sin (t)

dt2
= − sin (t)

and gone straight to our general solution :-)
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Systems of Differential Equations ←

• There is another nice way to represent such a second order
ordinary differential equation, as a system of first order
differential equations.

In this example, we start with the equation

ẍ+ x = 0,

then introduce a new variable v = ẋ (which we have seen
before – the velocity), and then express things as a system:

ẋ = v

v̇ = −x

This is a very general approach, which can also be applied
to nth order equations, resulting in a system n first order
equations.
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We can then rewrite the system in vector/matrix notation:[
ẋ
v̇

]
=

[
0 1
−1 0

] [
x
v

]
(note the convenient use of column notation for vectors).

Changing notation slightly, to simplify extension to nth
order: [

ẋ1
ẋ2

]
=

[
0 1
−1 0

] [
x1
x2

]

and, writing x for
[
x1
x2

]
, ẋ for

[
ẋ1
ẋ2

]
, and A for

[
0 1
−1 0

]
, we

can write

ẋ = Ax.
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Generalizing to nth order, writing x for

x1...
xn

, etc., and also

allowing a constant bi to be added to each row, we have a
system

ẋ = Ax + b.

In this form, it is easy to see that these are linear systems.
There is a well developed theory for solving such systems
(using eigenvalues/eigenvectors, etc.), and even for
generalizations where A and b can be time dependent:

ẋ = A(t)x + b(t).

Discussion of this is available in various places, such as
here: http://www.unf.edu/˜ mzhan/chapter4.pdf.
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• For future reference, here is an example of what a nonlinear
system would like in this sort of notation (of course, the
right hand sides won’t be linear, and hence we won’t get
the nice simple matrix representation).

These are the (famous) Lorenz equations, which give rise
to the Lorenz attractor:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

where σ is the Prandtl number, ρ is the Rayleigh number,
and β is another adjustable parameter. All of σ, ρ, and β

are positive, with typical values σ = 10, β = 8/3, and ρ is
varied. When ρ = 28, the system exhibits chaotic behavior.
You can see the nonlinear (mixed) terms in the second and
third equations (the xz and xy terms).
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Simple Harmonic Oscillator ←
• Let’s go back to our string example (i.e., our simple
harmonic oscillator). For ease of reading, let’s also go back
to our notation of position x and velocity v, or, when we
want to clarify the time dependence, x(t) and v(t):

ẋ = v ẋ(t) = v(t)

v̇ = −x v̇(t) = −x(t)

The simplest solution to this system is x(t) = cos (t) (and,
of course, v(t) = − sin (t)). We can plot x(t) vs. t:

t

x
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We can also try plotting both x(t) and v(t) on the same
graph:

t

x

v

x

v

Before long, this can get fairly messy. We would like better
ways to visualize the system.

One important point is that this is a fully deterministic
system, and the state of the system is completely specified
once we know x and v. We can thus visualize the system in
state space (also called phase space), with one dimension
for each variable. Each point in phase space represents the
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state of the system at a particular time, and over time the
system will trace a trajectory through phase space.

For our simple harmonic oscillator, the phase space
trajectory takes a particularly nice form:

x

v [
x(t)
v(t)

]

[
x(0)
v(0)

]
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• We can also think about the vector field consisting of the
derivatives. Associated with each point in phase space,
there is the vector of the velocity/acceleration values. At

the point
[
x(t)
v(t)

]
there is the derivative vector

[
v(t)
−x(t)

]
:

x

v
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For a given trajectory in phase space, the derivative vectors
along the trajectory will be tangent to the trajectory at
each point:

x

v
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Some Other Examples ←
It is probably worth noting that there are various other
examples we could have used to get here.

One example is a mass supported by a spring:

x

0

+

−~x− ~G

~G

Exercise for the reader: make sense of this diagram . . .
27



Another example is a pendulum:

θ

~T

~G

We measure the angle θ from the vertical. We have a
tangential component of the gravitational force

|~T | = − sin(θ) ≈ −θ
(with the linear approximation, and etc. . . . ).
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It’s not hard to see that each of these is described (in the linear
approximation) by the same system, x and velocity v:

ẋ = v

v̇ = −x

or, in the case of the pendulum, θ and θ̇:

θ̇ = v

v̇ = −θ.
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A Linear Approximation ←
• We can even use this to find (at least an approximation to)
a trajectory, given an initial point (initial condition) in
phase space. The basic idea comes from the definition of
the derivative:

df(t)

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t
which means that, for small ∆t, we have the approximation

df(t)

dt
≈
f(t+ ∆t)− f(t)

∆t
or,

df(t)

dt
∗∆t ≈ f(t+ ∆t)− f(t)

and thus the approximation

f(t+ ∆t) ≈ f(t) +
df(t)

dt
∗∆t.
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In the case of our simple harmonic oscillator, we have the
approximation[

x(t+ ∆t)
v(t+ ∆t)

]
=

[
x(t)
y(t)

]
+

[
ẋ(t) ∗∆t
v̇(t) ∗∆t

]

=

[
x(t)
y(t)

]
+

[
v(t) ∗∆t
−x(t) ∗∆t

]
.

Working with our particular system, let’s do a couple of
steps, starting at t = 0, and with ∆t = 0.1. We will have[
x(0)
y(0)

]
=

[
1
0

]
, and

[
ẋ(0)
v̇(0)

]
=

[
0
−1

]
. Our first step of

approximation will give us[
x(0.1)
v(0.1)

]
≈
[
1
0

]
+

[
0 ∗ 0.1
−1 ∗ 0.1

]

=

[
1
−0.1

]
.
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The next three steps of our approximation will be:[
x(0.2)
v(0.2)

]
≈
[

1
−0.1

]
+

[
−0.1 ∗ 0.1
−1 ∗ 0.1

]

=

[
0.99
−0.2

]
.

and [
x(0.3)
v(0.3)

]
≈
[

0.99
−0.2

]
+

[
−0.2 ∗ 0.1
−0.99 ∗ 0.1

]

=

[
0.97
−0.299

]
and [

x(0.4)
v(0.4)

]
≈
[

0.97
−0.299

]
+

[
−0.299 ∗ 0.1
−0.97 ∗ 0.1

]

=

[
0.9401
−0.396

]
32



This will look like (I have gone ahead and added several
more steps):

x

v

The approximation starts out doing a reasonable job (but
over time it does drift away from the real trajectory . . . ).
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• We’ll keep in mind this approximation approach, and come
back to it later. In particular, we’ll need to think some
about what cautions we should keep in mind when using
approximations. But, let’s briefly return now to the thrilling
days of yesteryear, and do a little bit more with linear
systems.

Our linear approximation of the string system clearly leaves
out a bunch of stuff. In particular, we know perfectly well
that a vibrating string won’t go on vibrating forever.
Things like friction (both internal within the string itself,
and external, like air resistance) will play a role in the
dynamics. We can improve our system by adding a friction
term. In keeping with our simplification of linearity, a
reasonable approximation of the friction term is that it
depends linearly on velocity. Keeping terms and constants
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simple, we can learn a reasonable amount by studying this
system (the second term in the v̇ line is friction):[

ẋ
v̇

]
=

[
v

−x− bv

]
.

Using the “characteristic polynomial” approach, we can look
at ẍ = −x− bẋ or ẍ+ bẋ+ x = 0, and thus work with

r2 + br + 1 = 0

giving us

r =
−b±

√
b2 − 4

2

or, assuming |b| < 2,

r = −
b

2
± i

√
4− b2

2
.
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From this, we get a solution to the system in the form

x(t) = e(− b2+i

√
4−b2
2 )t + e(− b2−i

√
4−b2
2 )t

= e−
b
2t

(
ei
√

4−b2
2 t + e−i

√
4−b2
2 t

)

= e−
b
2t ∗ 2 cos

(√
4− b2

2
t

)
which is decaying oscillations:
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In phase space, this system spirals in toward (0,0) (see
appendix 1):

x

v
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Trajectories ←
• We can characterize various points in phase space, and
various trajectories. In the case of the simple harmonic
oscillator, for any starting point (initial condition), the
resulting trajectory is a simple closed trajectory – a periodic
orbit.

x

v
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In the special case of starting at
[
0
0

]
, the system is at a

fixed point. This fixed point is, however, not stable, in the
sense that if some noise jostles the system, it will follow a

periodic orbit somewhat away from
[
0
0

]
.

On the other hand, in the case of of the damped harmonic

oscillator, any initial condition will tend toward
[
0
0

]
as

t→∞.
[
0
0

]
is a fixed point, and is an attracting stable fixed

point, in the sense that if noise jostles the system, it will,

as t→∞, return to
[
0
0

]
.
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For any of these continuous systems (i.e., systems where t
is a continuous variable), we can get at new system by
replacing t with −t. In the case of the simple harmonic
oscillator, there is complete symmetry, and the new system
is indistinguishable from the original – in particular, all
trajectories are closed periodic orbits.

In the case of the damped harmonic oscillator, there is a

fixed point at
[
0
0

]
, but all other trajectories spiral out (in

phase space) away from
[
0
0

]
. In this case,

[
0
0

]
is an

unstable, repelling fixed point.
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Discrete Linear Systems ←

• The systems we have been looking at all have time (t) as a
continuous variable (and we have been limiting ourselves to
smooth, i.e., differentiable, systems).

Now I’d like to move to discrete systems, where time
proceeds in steps rather than continuously. In other words,
instead of looking at the variable x(t), we will now take
time to only take integral values, and we will be interested
in systems with values x0, x1, x2, . . .

Instead of differential equations, we will be working with
difference equations. The general form of a (one variable)
difference equation is

xn+1 = f(xn, xn−1, . . . , x0, c).
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A very simple example is the Fibonacci sequence. This is
given by the difference equation

xn+2 = xn+1 + xn.

This is a second order difference equation. Once we specify
initial conditions (e.g., x0 = 0, x1 = 1), we have the
solution sequence 0,1,1,2,3,5,8,13,21, . . .

We can solve linear difference equations for the general
solution for the nth term using a procedure similar to the
approach for linear differential equations. For the Fibonacci
sequence, we rewrite the equation as

xn+2 − xn+1 − xn = 0,

and then work with the characteristic polynomial

r2 − r − 1 = 0.
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From this, we get

r =
1±
√

1 + 4

2
=

1±
√

5

2
.

The general form of the solution is then

xn = a1

(
1 +
√

5

2

)n
+ a2

(
1−
√

5

2

)n
.

Once we specify the initial conditions, we can solve for a1

and a2. For example, when x0 = 0 and x1 = 1, we get

a1 ∗ 1 + a2 ∗ 1 = 0

a1 ∗
(

1 +
√

5

2

)
+ a2 ∗

(
1−
√

5

2

)
= 1,

from which a2 = −a1, and so

a1 ∗
(

1 +
√

5

2

)
− a1 ∗

(
1−
√

5

2

)
= 1,
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and hence

a1 =
1√
5

a2 = −
1√
5

and so

xn =
1√
5
∗
(

1 +
√

5

2

)n
−

1√
5
∗
(

1−
√

5

2

)n
.

This is a very general approach (with some minor subtleties
when dealing with repeated roots) – and, of course, there
are the problems of finding the roots for higher order
polynomials, but this basically gets us going on general
linear difference equations.
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A Discrete Nonlinear System ←

• Having spent some time looking at linear systems, now it’s
time to move on to nonlinear systems.

We will start with a classic example, called the discrete
Logistic Equation. This example is very simple to develop
and specify, but in its details it reveals many of the
characteristic properties of nonlinear dynamical systems.

45



The Logistics Equation (derivation) ←

• Now it’s time to get down to business, and start exploring a
specific nonlinear example. We’re going to look at a classic
example from biology, concerning population growth.

We’ll start by considering a single species, living in an
environment where it depends on a consumable resource.
So, imagine a beaker of sugar water, into which we put a
single bacterium:
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As time passes, the bacteria reproduce (by dividing, time
lapse pictures, bacteria greatly magnified . . . ):

P0 P1 P2 P3 P4

The population of bacteria at time n+ 1 will be given by

Pn+1 = 2Pn (with P0 = 1),

and so in general

Pn = 2n.
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• Now we’ll ask the traditional question at this point: If we
put the first bacterium in the beaker at 9:00 am, the
bacteria divide every 10 minutes, and the beaker is
completely full of bacteria at 12:00 noon, at what time was
the beaker exactly half full of bacteria?

The answer is clearly “11:50 am.” (Now we’re supposed to
think about natural resources like oil, and oil consumption
doubling every 20 years – if in all the time of oil
consumption up until now we have consumed half the total
reserve of oil, in how many years will we have consumed all
the oil? etc. . . . )

But the question I really want to ask is, “What will the
beaker look like at 10 minutes after 12:00 noon?”

The first thought is that there will be sugar water and
bacteria all over the table because the beaker will have
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overflowed from the next doubling (it was completely full at
12:00 noon) – but in the real world, that can’t be right. In
fact, there won’t be any live bacteria in the beaker at 10
minutes after 12:00 noon, because they all will have died of
starvation! The beaker was completely full of bacteria, so
there was no sugar water left . . .

In fact, as the bacteria population gets closer to filling the
beaker, there will be a downward pressure on population –
there will be increasing competition for scarce resources.
Therefore, a better model of the bacteria population at a
given time n+ 1 will be

Pn+1 = 2Pn(M − Pn)

where the 2 is from population growth by doubling, and M

is the maximum number of bacteria that can fit in the
beaker. Note that this corresponds with the idea that if the
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beaker is ever completely full of bacteria, in the next time
step the population will go to 0 because there will be mass
starvation . . .

• Now let’s simplify the units – instead of keeping track of the
total population Pn, we’ll let xn = Pn

M , that is, the proportion
of the maximum population (also sometimes called the
carrying capacity) that we have at time n. We will thus
have 0 ≤ xn ≤ 1. Let’s also generalize to other species that
might have a net birth rate R other than 2, so that we will
have the classic logistics equation for population of a single
species in a resource limited environment:

xn+1 = R ∗ xn ∗ (1− xn).

Note that this has an x2
n term, is thus nonlinear, and can’t

be “solved” in any straightforward way . . .
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The Logistics Equation (analysis) ←

• The fact that we can’t “solve” the logistics equation
doesn’t mean that we can’t study its behavior, or analyze
its characteristics. Let’s do some work on that. We can
start by just observing the system in action.

For our first example, let’s look at what happens when
R = 1. We’ll choose a starting value of x0 = 1

2. We will
have

x0 =
1

2

x1 = 1 ∗
1

2
∗ (1−

1

2
) =

1

4

x2 = 1 ∗
1

4
(1−

1

4
) =

1

4
∗

3

4
=

3

16
. . .
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Plotting xn vs. n, we see (first x0 = 1
2, then x0 = 0.75):

xn

1

xn+1 = 1.0 ∗ xn ∗ (1− xn), x0 = 1
2

n

xn

1

xn+1 = 1.0 ∗ xn ∗ (1− xn), x0 = 0.75

n
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Let’s look at some other values of R (and values of x0):

xn

1

xn+1 = 2.0 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 2.0 ∗ xn ∗ (1− xn), x0 = 0.75

n
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xn

1

xn+1 = 3.0 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 3.5 ∗ xn ∗ (1− xn), x0 = 0.5

n
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xn

1

xn+1 = 3.6 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 3.7 ∗ xn ∗ (1− xn), x0 = 0.5

n
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xn

1

xn+1 = 3.8 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 3.9 ∗ xn ∗ (1− xn), x0 = 0.5

n
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xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.5

n

xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.501

n
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xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.75

n

xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.751

n
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xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.751

n

xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.751

n
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xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.3

n

xn

1

xn+1 = 4.0 ∗ xn ∗ (1− xn), x0 = 0.01

n
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Cobweb Diagrams ←
• We can view the system in a somewhat different way. This
is a form of phase space for the system, where we will plot
xn+1 against xn. For any value of R > 0, the right hand
side is a parabola opening down, with roots at xn = 0 and
xn = 1. The maximum value of the parabola occurs at
xn = 1

2, and the maximum value is R
4 .

xn

1

xn+1

xn+1 = xn

xn+1 = Rxn(1− xn)
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Now we’ll follow the trajectory of the system. We’ll
visualize this by drawing a sequence of lines (often called a
cobweb diagram). The coordinates of the endpoints of the
lines will be (x0,0)− > (x0, x1), (x0, x1)− > (x1, x1),

(x1, x1)− > (x1, x2), (x1, x2)− > (x2, x2), etc.

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.9 ∗ xn(1− xn)
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Let’s let that same example run for a while:

xn

1

xn+1

xn+1 = xn

x0 = 0.4 1

xn+1 = 3.9 ∗ xn(1− xn)

x0 = 0.4
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And even longer:

xn

1

xn+1

xn+1 = xn

x0 = 0.4 1

xn+1 = 3.9 ∗ xn(1− xn)

x0 = 0.4
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With a different starting value:

xn

1

xn+1

xn+1 = xn

x0 = 0.1 1

xn+1 = 3.9 ∗ xn(1− xn)

x0 = 0.1
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And even longer:

xn

1

xn+1

xn+1 = xn

x0 = 0.1 1

xn+1 = 3.9 ∗ xn(1− xn)

x0 = 0.1
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For other values of R (320 iterations):

xn

1

xn+1

xn+1 = xn

x0 = 0.5 1

xn+1 = 3.828 ∗ xn(1− xn)

x0 = 0.5
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And slight changes (also 320 iterations):

xn

1

xn+1

xn+1 = xn

x0 = 0.5 1

xn+1 = 3.829 ∗ xn(1− xn)

x0 = 0.5
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• Now we’ll be a little more systematic in our analysis. We’ll
start with small values of R, where the dynamics are
relatively simple. Let’s look at the slope of the tangent line
to the parabola at 0. We are working with the parabola
P (x) = R ∗ x ∗ (1− x), or P (x) = −Rx2 +Rx, so the
derivative is P ′(x) = −2Rx+R. We thus have P ′(0) = R,
and hence when R ≤ 1, the entire parabola (for x > 0) lies
below the line xn+1 = xn. In this case, the dynamics just
die away to zero (i.e., limn→∞(xn) = 0). In particular, 0 is
an attracting fixed point of the system. (Note that for any
value of R, 0 is a fixed point of the system.)

For R ≤ 1, the dynamics don’t depend in any significant
way on the starting value – almost immediately, the system
begins decaying to 0, and continues directly there.
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 0.9 ∗ xn(1− xn)

x0 = 0.7
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For R > 1, we have a new feature – the parabola crosses
the line xn+1 = xn at some point x > 0. In particular, we
solve for that crossing point by setting xn = xn+1 – in other
words, we have

xn = R ∗ xn ∗ (1− xn),

and so

xn −Rxn(1− xn) = 0

xn −Rxn +Rx2
n = 0

Rx2
n + (1−R)xn = 0

xn(Rxn + 1−R) = 0,

and hence the crossing point occurs at

xn =
R− 1

R
.
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For all values of R > 1, this crossing point is a fixed point
of the system. For values 1 < R < 3, this is an attracting
fixed point for any starting value x0 (except x0 = 0 or 1,
and 0 is now a repelling fixed point):

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 1.5 ∗ xn(1− xn)

x0 = 0.2
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 1.5 ∗ xn(1− xn)

x0 = 0.9
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 2.0 ∗ xn(1− xn)

x0 = 0.9
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 2.0 ∗ xn(1− xn)

x0 = 0.05
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 2.8 ∗ xn(1− xn)

x0 = 0.9

Note that for 2 < R < 3, the parabola is coming back down
at the fixed point R−1

R , and so the trajectory spirals in . . .
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When R = 3, we have a new phenomenon. We still have a
fixed point at R−1

R , but it is no longer and attracting fixed
point:

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.9
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.63
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xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.5
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For R slightly bigger than 3, we have new behavior:

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.075 ∗ xn(1− xn)

x0 = 0.5
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Or, starting closer to the fixed point:

xn

1

xn+1

xn+1 = xn

x0 1

xn+1 = 3.075 ∗ xn(1− xn)

x0 = 0.65
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As R passes through 3, the fixed point goes from being an
attracting fixed to point to being an unstable fixed point
(note that we actually already observed this as R passed
through 1, where 0 became an unstable fixed point).

By looking more closely at the region of the fixed point as
R passes through 3, we can understand better what is
happening. In particular, the critical feature of the system
is that as R goes through 3, the slope of the tangent to the
parabola goes from above −1 to below −1 (i.e., becomes
more steep).
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0.63

0.69

0.69

xn+1 = 2.95 ∗ xn(1− xn)

x0 = 0.64

0.64

0.69

0.69

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.645
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0.64

0.69

0.69

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.65

0.64

0.69

0.69

xn+1 = 3.0 ∗ xn(1− xn)

x0 = 0.655
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0.63

0.71

0.71

xn+1 = 3.05 ∗ xn(1− xn)

x0 = 0.667

If we zoom out from this, we see another interesting
phenomenon arise . . .
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0.57

0.77

0.77

xn+1 = 3.05 ∗ xn(1− xn)

x0 = 0.667
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0.57

0.77

0.77

xn+1 = 3.05 ∗ xn(1− xn)

x0 = 0.575
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• We are seeing here an orbit of period 2 – the system
bounces back and forth between two values. For values of
R < 3 we had an attracting fixed point. The attracting
fixed point is at 0 for 0 ≤ R ≤ 1, and at R−1

R for 1 < R < 3.
At R = 3 we still have the fixed point (and in fact that
fixed point remains for all R ≥ 1), but it is no longer a
stable fixed point. For R > 3, it is a repelling fixed point –
values near, but not exactly on, the fixed point will, in
successive iterations, move further away.

At R = 1 and R = 3, changes in R result in significant
changes in the dynamics of the system. These significant
changes in the dynamics of the system resulting from
changes in a controlling parameter are called bifurcations.
At R = 1, the stable (attracting) fixed point at 0 becomes
unstable, and becomes a repelling fixed point. We acquire a
new stable (attracting) fixed point at R−1

R .
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At R = 3, the fixed point at R−1
R becomes unstable, and we

acquire a new attracting stable orbit of period 2. These is
the first of a sequence of bifurcations in the dynamics of
the logistics equation. At each of these bifurcations, an
orbit of period 2n becomes unstable (although it continues
to exist in the dynamics), and a new stable orbit of period
2n+1 arises. This process is called a period doubling
bifurcation cascade.

We can calculate the x values of this period 2 orbit by
looking at two steps of the difference equation:

xn+2 = Rxn+1(1− xn+1)

= R(Rxn(1− xn))(1−Rxn(1− xn))

= R2xn(1− xn)(1−Rxn +Rx2
n)

= R2xn(−Rx3
n + 2Rx2

n − (R+ 1)xn + 1)
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We are looking for period 2 orbits – in other words, values
where xn+2 = xn. We therefore want

xn = R2xn(−Rx3
n + 2Rx2

n − (R+ 1)xn + 1)

or

R2xn(−Rx3
n + 2Rx2

n − (R+ 1)xn + 1)− xn = 0.

This is a 4th degree polynomial is xn, which, for R > 3, has
4 roots. It is easy to see that xn = 0 is a root (but we
already knew that, because 0 is a fixed point of the original
equation, and hence also repeats itself every 2 steps).
Similarly, xn = R−1

R is a root, because it too is a fixed point.
We could proceed with the (somewhat messy) algebra to
find the other two roots, but instead let’s look at the
cobweb diagram for xn+2 vs. xn (in these diagrams, we’re
also seeing the original parabolas, for reference . . . ).
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You can see the bifurcation happen as R reaches 3.0:

xn

1

xn+2

xn+1

xn+2 = xn

R = 2.8

xn

1

xn+2

xn+1

xn+2 = xn

R = 3.0
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and moves on past . . .

xn

1

xn+2

xn+1

xn+2 = xn

R = 3.2

xn

1

xn+2

xn+1

xn+2 = xn

R = 3.7
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We can also look at higher order iterates:

xn

1

xn+4

xn+2

xn+1

xn+4 = xn

R = 3.829
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For various values of R:

xn

1

xn+4

xn+2

xn+1

xn+4 = xn

R = 3.9
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We can do cobweb diagrams also (320 iterations):

xn

1

xn+4

xn+4 = xn

R = 3.829

x0 = 0.3
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With changing starting values (still 320 iterations):

xn

1

xn+4

xn+4 = xn

R = 3.829

x0 = 0.5
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And changing values of R (also 320 iterations):

xn

1

xn+4

xn+4 = xn

R = 3.828

x0 = 0.5
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Bifurcation Diagrams ←

• There is another way of viewing the behavior of the
logistics equation, which makes it easier to see the changes
in behavior as R changes. We will display trajectories for
various values of R all at once in a single two dimensional
picture. On our two dimensional image, the horizontal axis
will be for various values of R. For each value of R, the
vertical direction will show a sequence of values of xn.

This approach will allow us to see overall changes in the
dynamics as we vary the controlling parameter R. As we
will see, there are values of R at which we will have
significant changes in the dynamics. As indicated above,
these changes are called bifurcations, and hence this view is
often called a bifurcation diagram.
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Thus, for example, when R = 3.5 (and x0 = 0.5):

xn

1

n

xn+1 = 3.5 ∗ xn ∗ (1− xn), x0 = 0.5

We rotate the graph, and show values of xn at R = 3.5:

R

1

xn

R = 3.5
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This image is a bit of a smear, and it is hard to see
structure in the dynamics. We are actually more interested
in the long term behavior of the system. For any particular
starting value of x0, the system is likely to wander around
for a while before settling down to its stable (limiting)
behavior. We can see this for particular values of R.
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Here we are looking at R = 3.5. The system wanders for a
while, but is settling down to an orbit of period 4:

xn

1

xn+1

xn+1 = xn

x0 = 0.3 1

xn+1 = 3.5 ∗ xn(1− xn)

x0 = 0.3
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What we will do is to throw away early values of xn (often
called the transients), and show the long term, or limiting
trajectory. In this picture, we have thrown away the first 80
values of xn, and plotted the next 40:

R

1

xn

R = 3.5

In this picture, we can see the period 4 orbit, which is an
attracting closed periodic orbit. As n goes to ∞,
trajectories approach this limiting orbit.
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In the following images, we can see "bifurcation diagrams"
for the logistic equation. In the first couple of images,
things are monochrome, with dots for values of xn. In the
later pictures, there are various colors, reflecting the
amount of time the system spends in those regions (closer
to white means longer time spent).

The first diagram shows 0 ≤ R ≤ 4, and 0 ≤ xn ≤ 1. Later
we can talk about why we keep R ≤ 4. These images all
have x0 = 0.3, and discard the first 80 iterations.

In the first image, you can see the transition from a stable
(attracting) fixed point at 0 for R < 1. At R = 1, that fixed
point becomes unstable, and there is a new stable
(attracting) fixed point at R−1

R for 1 < R < 3. At R = 3 that
fixed point becomes unstable, and a new attractor of period
2 arises. As we increase R, that period 2 orbit becomes
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unstable, and we get a new orbit of period 4, then period 8,
etc. As R grows, we pass through orbits of all periods of
the form 2n. This is often referred to as a period doubling
bifurcation cascade. This period doubling cascade reaches
its limit before R goes to ∞, and we enter a chaotic realm.

Other diagrams show some of what we will see if we zoom
in. The captions under the images tell the range of R
values, the range of values for xn being shown, and the
number of iterations. In these images, there are 900
possible values for xn. In generating the images, the
logistics equation is iterated for a given value of R, and at
each step one of 900 bins for xn is incremented. These
values are then used to select a color.

It is worth remembering that these images, as we zoom in,
also reveal various artifacts having to do with machine
resolution, etc. . . .
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R=0.000-R=4.000-x=0.000-x=1.000-iter=1500
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R=2.800-R=4.000-x=0.000-x=1.000-iter=1500
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R=2.800-R=4.000-x=0.000-x=1.000-iter=80000
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R=2.8000-R=4.000-x=0.000-x=1.000-iter=80000-z
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R=3.823-R=3.869-x=0.447-x=0.564-iter=320000
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R=2.8000-R=4.000-x=0.000-x=1.000-iter=80000
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R=2.997-R=3.002-x=0.660-x=0.677-iter=80000
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R=3.000-R=3.000-x=0.665-x=0.668-iter=80000-z
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R=3.000-R=3.000-x=0.665-x=0.668-iter=160000
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R=2.800-R=4.000-x=0.000-x=1.000-iter=80000 z
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R=3.633-R=3.733-x=0.691-x=0.758-iter=320000
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• There are various tools for exploring such bifurcation
diagrams, such as:

http://csustan.csustan.edu/˜
tom/SFI-CSSS/nonlinear/Chaos.html
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Universality ←
• An important result in the study of nonlinear (and chaotic)
systems is a universality property discovered by Mitchell
Feigenbaum. As we increase R from 0, we see a sequence
of bifurcations. In particular, starting at R = 3, we see a
sequence of period doubling bifurcations. by the time we
get to R = 3.57, we have had infinitely many period
doublings, and we reach a chaotic realm.

Feigenbaum observed that the distance between successive
period doubling bifurcations in the logistics map exhibited
an interesting property. If we let Ri be the location of the
ith period doubling bifurcation after R = 1, and let
di = Ri+1 −Ri, then we can look at the sequence di

di+1
.

Feigenbaum showed that this sequence has a limit:

δ = lim
i→∞

di
di+1
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The value of δ has been calculated (to many decimal
places):

δ = 4.66920160910299067185320382 . . .

This value is approached as R approaches the accumulation
point where the bifurcation cascade ends, and a chaotic
region begins:

R∞ = 3.569934669 . . .

Feigenbaum also made a more striking and important
observation. This process (period doubling bifurcation
cascade route to chaos) occurs in may systems, and the
value of δ is universal for a broad range of systems. This
universality property opened up the possibility of finding
quantitative properties, rather than just qualitative
properties, for a variety of nonlinear systems.
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R=2.6-R=4.0-x=0.0-x=1.0-iter=1500 di
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Feigenbaum also discovered another universality principle
concerning the width of the tines in the pitchfork
bifurcation diagrams. In this case, we look at the successive
widths of the tines, and find that the limiting value of the
ratios of these widths is

α = 2.502907875095892822283902873218 . . .

On the next page is a brief pictorial overview.

For more discussion of these ideas, see, for example,
Fiegenbaum [19] and Fillion [20].
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R=2.6-R=4.0-x=0.0-x=1.0-iter=1500 ai
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An example of the range of universality of these properties
can be seen from the following conditions, which are
sufficient to give δ as the limiting value for the bifurcation
cascade:

1. f : [0,1]→ R is continuous, with a unique differentiable
maximum x̄ ;

2. f(0) = f(1) = 0, f(x) > 0 for x ∈ (0,1), f is strictly
increasing on (0, x̄), and strictly decreasing on (x̄,1);

3. For some parameter value, f has two fixed points which
are both unstable; and,

4. In the interval N containing x̄ such that |f ′(x)| < 1, f is
concave downward.
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The Xarkovskiï Theorem ←

• The Xarkovskiï Theorem tells us about periodic points
of continuous functions. (Note: Xarkovskiï is a
Ukrainian mathematician. His name (here written in
Cyrillic) is transliterated as "Sarkovskii" or "Sharkovsky" or
"Sharkovski" or . . . Since I can, I’ve gone ahead and used
the Cyrillic :-)

Supposef(x) is a function. Then a point x is a periodic
point of period n for f if

x = fn(x) = f(f(. . . (f(x)) . . .)),

and

x 6= fk(x) for 1 ≤ k < n.
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The theorem looks at the special case of a continuous
function f : R→ R.

Consider the following ordering of the positive natural
numbers:

3 5 7 9 11 . . . (2n+ 1) · 20 . . .

3 · 2 5 · 2 7 · 2 9 · 2 11 · 2 . . . (2n+ 1) · 21 . . .

3 · 22 5 · 22 7 · 22 9 · 22 11 · 22 . . . (2n+ 1) · 22 . . .

3 · 23 5 · 23 7 · 23 9 · 23 11 · 23 . . . (2n+ 1) · 23 . . .
...

. . . 2n . . . 24 23 22 2 1

(note that every positive natural number occurs exactly
once in this list).

The Xarkovskiï Theorem states that if f : R→ R is
continuous, and has a periodic point xn of period n for
some value n on this list, then it also has points ym of

124



period m for all m later in the list than n. In particular, if f
has a point x3 of period 3, then it has periodic points of all
possible periods.

This leads to the famous saying that “period 3 implies
chaos” (although this may need to be taken with a grain of
salt . . . ). There is a classic paper about this: Period Three
Implies Chaos by Li and Yorke [24].
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A Hint of Topics (likely :-) to Come: ←

• . . .
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The Cantor Set ←

• An important example (of a fractal, among other things)
and tool for studying nonlinear dynamical systems is the
Cantor set. This set was developed by Georg Cantor in the
1880’s, and has led a long and fruitful life.

We can develop the Cantor set by starting with the unit
interval, and iterating steps. At each step, we will remove
the middle thirds of each (remaining) piece:
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The Cantor set is what is left after we iterate this process
countably many times.

We can calculate how much “length” is left after the
process:

length = 1−
(

1

3
+

2

9
+

4

27
+ . . .

)
= 1−

(
20

31
+

21

32
+

22

33
+ . . .

)

= 1−
1

3

∞∑
n=0

(
2

3

)n

= 1−
1

3

 1

1− 2
3


= 1− 1

= 0.
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It may appear from this that there is nothing left in the set,
but that is far from the case.

Let’s look at the set again, but labeling things with ternary
(base 3) numbers. Each point in the interval [0,1] can be
written as a ternary number 0.d1d2d3 . . . where each of the
digits di is 0, 1, or 2:

0.0 1.0
0.0d2d3 . . . 0.1d2d3 . . . 0.2d2d3 . . .

.00 .01 .02 .20 .21 .22
.001 .021 .201 .221
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In this form, we can see that in the first step, we remove all
points of the form .1d2d3d4 . . . . In the second step, we
remove all points of the form .01d3d4 . . . and .21d3d4 . . . .
In the nth step, we remove all points that have their first
(ternary) digit 1 in their nth place. We will be left with
(only) all points that have no 1 in their ternary expansion.

Note: We do have the (potential) problem that some
points, such as 0.222 . . . = 1.0 have two representations.
We will use the representations with the repeated 2s. Thus,
for example, the point 0.0222 . . . = 0.1000 . . . = 1

3 will not
be removed.

In this form, we can see that there is a 1− 1 onto function
from the Cantor set to the interval [0,1] – we simply replace
every 2 in the ternary expansion with a 1. From this, we
can see that the Cantor set is an uncountable set. In other
words, even though we have removed “length” 1, we
nonetheless have uncountably many points still in the set.
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Definition of chaos ←

• At some point it becomes worthwhile to work with a
specific definition of “chaos,” think some about to what
extent it might be a useful definition, and to see the
definition in action.

The definition we will work with is (generally) attributed to
Robert Devaney [17]. Our version is not exactly Devaney’s,
but is fairly close. It contains three pieces, which do a
reasonable job of capturing intuitive ideas of deterministic
chaos. We’ll start by stating the definition, with some brief
discussion of some aspects of the definition (e.g.,
redundancy among parts of the definition), and then apply
the definition to some specific cases.
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Definition. Suppose X is a metric space, f : X → X is
continuous, and S ⊆ X is an infinite subset with the
property that f(S) = S. Then we say that f is chaotic on S

if

1. f has sensitive dependence on initial conditions on S.

2. Periodic points of f are dense in S, and

3. f exhibits topological transitivity on S.

We need to clarify some terms in this definition.
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• A metric space is a set of points (a space) X for which we
have a metric function d : X ×X → R such that, for all
x1, x2, x3 ∈ X,

1. d(x1, x2) ≥ 0,

2. d(x1, x2) = 0 iff x1 = x2,

3. d(x1, x2) = d(x2, x1), and

4. d(x1, x3) ≤ d(x1, x2) + d(x2, x3).

For such a space, we will use the topology induced by the
metric (on both X and S), so that, for example, continuity
of a function is relative to the metric topology. The metric
topology is the topology generated by ε-neighborhoods (for
any ε > 0):

B(x0, ε) = {x ∈ X|d(x0, x) < ε}.
133



• For sensitive dependence on initial conditions (SDIC), we
will use the property that, for any s0 ∈ S, and for any
ε-neighborhood B(s0, ε) of s0, there exist s1 ∈ B(s0, ε),
δ > 0, and λ > 0 such that

d(fn(s0), fn(s1)) ≈ eλnδ

(at least for a while . . . ). Here fn(s) is the nth iteration of
f on s (i.e., fn(s) = f(f(. . . f(s)) . . .)) = f ◦ f ◦ . . . ◦ f ◦ f(s)).

At this point, this is not a “mathematical” statement – we
would need to clarify what we mean by “≈” and “for a
while”.

In fact, for at least some of the examples we will work with,
we can use the more specific (and in some sense stronger)
condition that there exists a λ > 0 such that, for any s0 ∈ S,
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for any ε-neighborhood B(s0, ε) of s0, for any n > 0, there
exist δ > 0 and s1 ∈ B(s0, ε) such that

d(fk(s0), fk(s1)) ≥ eλkδ for k ≤ n.

We use this sort of notation (and definition) to correspond
with the concept of the l�punóv (lyapunov) exponents of
continuous dynamical systems.

This condition says that no matter how closely we specify
initial conditions (s0, but with “error” of a small ε), our
prediction error can grow exponentially . . .

There is ongoing discussion among researchers about this
part of the definition (see, for example, the discussion in
Bishop [4]). In particular, Devaney originally actually only
required linear growth rather than exponential growth.
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• The condition that periodic points are dense means that for
any ε-neighborhood B(s0, ε), there exist an n > 0 and an
s ∈ B(s0, ε) such that fn(s) = s.

One way to think about this is that no matter where we
look in a chaotic system, we will still see regularities
(periodic points) – in particular, our system is not just pure
noise, but has structure within it.

This is another area of ongoing discussion (again, see
Bishop [4]).
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• The condition of topological transitivity means that for any
two points s0, s1 ∈ S, and for any ε-neighborhoods B(s0, ε0)
and B(s1, ε1) of these two points, there is a point
s ∈ B(s0, ε0) with fn(s) ∈ B(s1, ε1) for some n.

This condition is often called mixing. Since the point s1
can be anywhere in S, this means that points in any
neighborhood of a given point s0 will, over time, spread
throughout all of S, and this is the case for any s0 ∈ S.
Thus, over time, the system gets thoroughly mixed (despite
the densely distributed periodic points).

Some workers in the field take this property to be the most
important property of chaos (i.e., the system looks “noisy,”
in the sense “most points get sent almost anywhere over
time” . . . ).

This also is an area of active discussion among workers in
the field . . .
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• It turns out that this definition (well, more precisely,
Devaney’s original definition) is not minimal. For example,
Banks, et al.[1] showed that condition 1. (sensitive
dependence on initial conditions) follows from 2. and 3.
(periodic points are dense, and topological transitivity). We
could thus leave condition 1. out of the definition, and not
change the collection of systems we would call chaotic.
This also says that despite the fact that condition 1.
(sensitive dependence) looks like a metric property, in fact
chaos (as so defined) is really a topological property
(mixing, with periodicity).
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• We can also observe that one way to show that a system is
chaotic is to show that it is homeomorphic to a system we
have already shown to be chaotic. In general form, if we
have a commutative diagram

X X
f

Y Y
g

h h−1

where h : X → Y is a homeomorphism, and g : Y → Y is
known to be chaotic on Y , then we can conclude that f is
also chaotic on X.

The general idea here is known as topological conjugacy.
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• It is also worth noting that this definition is far from
universally accepted among mathematicians and/or
physicists. For discussion of some of the issues, see
Bishop[4] and Knudsen[23]. But, to a reasonable extent,
this definition captures a reasonable amount of what a
variety of workers in the field seem to have in mind when
they speak of chaos.

In any case, this is a useful definition. As we will see, there
are systems that are very easy to describe that are chaotic
under this definition, and, conveniently, the proofs that they
are chaotic are relatively straightforward. Of course, it
shouldn’t be any great surprise that the proofs are
comparatively easy in at least some specific cases, because
part of the motivation for choosing a specific “definition” is
to make particular proofs relatively easy . . .
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A Chaotic Map ←

• Let’s look at a specific map. Consider f : [0,1]→ [0,1]

given by

f(x) =

2x if 0 ≤ x < 1
2

2x− 1 if 1
2 ≤ x ≤ 1.

A convenient way to look at the map (iterations) of the
function is to use the binary representation of the unit
interval. Each point in the unit interval has a representation
as x = 0.d1d2d3d4 . . . where each binary digit di ∈ {0,1}.
Our function f is then realized as

f(x) = f(0.d1d2d3d4 . . .) = 0.d2d3d4 . . .

In other words, our function is just a binary shift – it shifts
all the binary digits one place to the left (and throws away
the leading digit if it was 1).
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Note: as we did with the Cantor set, we will make the
binary representations unique by using repeating 1’s, so, for
example, we will use 0.111. . . instead of 1.000. . .

We will now claim that this function f is chaotic of the
entire unit interval. Let’s check against our 3-part
definition:

1. Sensitive Dependence on Initial Conditions: Suppose we
are given x0 ∈ [0,1], ε > 0, and n > 0.

Let λ = ln (2) so that eλk = 2k. Let m ≥ 0 be such that
2−(m+n) < ε. Let δ = 2−(m+n+1). Now, if
x0 = 0.d1d2d3d4 . . ., we let
x1 = 0.d1d2d3d4 . . . dm+n(1− dm+n)dm+n+1dm+n+2 . . .. In
other words, we change the m+ n digit of x0 (from 0 to
1, or 1 to 0) to get x1.
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We then will have that d(x0, x1) = 2−(m+n) < ε, and
d(x0, x1) > 2−(m+n+1) = δ. Now, as we iterate, we get

d(fk(x0), fk(x1)) = 2k ∗ 2−(m+n) > 2k ∗ δ = eλkδ

for k ≤ n, as desired. In other words, we get local
exponential spreading of iterates of (at least some)
nearby points.

2. Periodic Points Are Dense: This is easy . . . Every
rational number in [0,1] has periodic binary expansion,
and therefore is periodic under the shift map.

3. Topological Transitivity (mixing): Suppose we are given
x0, x1 ∈ [0,1], ε0 > 0, and ε1 > 0. Then, we let n be such
that 2−n < 2−2ε0. Now if x0 = 0.d1d2d3d4 . . . and
x1 = 0.e1e2e3e4 . . ., we let
x = 0.d1d2d3d4 . . . dne1e2e3e4 . . .. In other words, x has
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digits from x0 for the first n positions, and then digits of
x1 concatenated after that. We will then have that
x ∈ B(x0, ε0), and fn(x) = x1 ∈ B(x1, ε1), as desired.

From this, we see that the binary shift map is chaotic on
the unit interval [0,1] (under the definition we have
outlined above . . . ).

Note: Full disclosure – the binary shift map isn’t continuous
on [0,1] – in particular, there is a discontinuity at 1/2.
With some care, we can handle that, so let’s just move
forward :-)
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Some other chaotic maps ←
• Now that we have an example of a chaotic map, we can use
the "topological conjugacy" idea to show that some other
related maps are chaotic.

Let’s start with a picture of the binary shift map:

f(x) =

2x if 0 ≤ x < 1
2

2x− 1 if 1
2 ≤ x ≤ 1

looks like this:

xn

1

xn+1

xn+1 = xn

xn+1 =

2xn if 0 ≤ xn < 1
2

2xn − 1 if 1
2 ≤ xn ≤ 1
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• If we flip the second half, we get the tent map, which looks
like this:

xn

1

xn+1

xn+1 = xn

xn+1 =

2xn if 0 ≤ xn < 1
2

2 ∗ (1− x) if 1
2 ≤ x ≤ 1

A relatively straightforward topological conjugacy argument
shows that this map also is chaotic.
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• Now if we slightly modify the tent map (make is "smooth"
at the top), we get the logistic map with R = 4, which
looks like:

xn

1

xn+1

xn+1 = xn

xn+1 = 4xn(1− xn)

Again, by a relatively straightforward topological conjugacy
argument, we can see that the logistics map for R = 4 is
chaotic on [0,1].
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• One more example: we’ll now move into the realm of the
complex numbers, C = {x+ iy|x, y ∈ R, i2 = −1}.

Consider the unit circle in the complex plane
C1 = {z ∈ C| |z| = 1}, where |z| = |x+ iy| = (x2 + y2)

1
2.

C1 looks like:

x
1

i

iy

−1

−i
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Now consider f : C1 → C1 given by f(z) = z2. We can
observe that any point in C1 can be written as
z = x+ iy = cos(θ) + i sin(θ) for some θ, and then
remember (from above) that cos(θ) + i sin(θ) = eiθ. We
then see that our function f(z) is given by

f(z) = f(eiθ) = (eiθ)2 = ei∗2θ.

In pictorial form:

x
1

i

iy

z = eiθ

θ

f(z) = ei∗2θ
2θ

−1

−i
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Another way to look at this (just keeping track of θ) is:

θn
2π

2π

θn+1

θn+1 = θn

θn+1 =

2θn if 0 ≤ θn < π

2θn − 2π if π ≤ θn ≤ 2π

Once again, it is easy to see that this map is chaotic on C1.
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Julia Sets ←

• Now we are about ready to dive in to the Mandelbrot set.
We’ll start with Julia sets.

We observed that f(z) = z2 is chaotic on the unit circle in
C. In particular, the function keeps elements of the unit
circle on the unit circle. In other words, if |z| = 1, then
|z2| = 1 also.

On the other hand, if |z| < 1, then iterates of z go to 0,
which is an attracting fixed point of the map. For any point
z with |z| < 1, we have limn→∞ fn(z) = 0. On the other
hand, if |z| > 1, then limn→∞ fn(z) =∞.

151



The complex plane C thus breaks up into 4 pieces:

1. An attracting fixed point at 0,

2. A basin of attraction of the attracting fixed point – in
other words, a set of points whose trajectories go toward
the attracting fixed point

3. A basin of attraction of the attracting point at infinity
(more on this later . . . ), and

4. A boundary between these two basins – in this case, the
unit circle.

In the following picture, regions 2, 3, and 4 are indicated in
green, blue, and red.
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This is a view of the regions associated with f(z) = z2:

x1

i

iy

153



• The set of points that form the boundary of the basin of
attraction of ∞ are particularly interesting. In the case of
the function we have been looking at (f(z) = z2), the
boundary is just the unit circle ({z | |z| = 1}).

Now let’s generalize slightly, and consider the set of
functions fc(z) = z2 + c, for c ∈ C. We have been looking at
f0(z).

For these functions, we can define the Julia Set of the
function by:

J(fc(z)) = the boundary of the basin of attraction of ∞

where the basin of attraction of ∞ is the set

B(∞) = {z | lim
n→∞ f

n
c (z) =∞}.
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On the following pages are some examples of Julia sets for
various values of c. These are actually calculated by inverse
iteration of the relevant function:

f−1
c (z) = sqrt(z − c)

However, since there are two square roots, we randomly
choose one of the square roots. Similarly to what we did in
the bifurcation diagrams, we discard the first few iterations,
and then plot from there on.

MatLab source code follows the Julia sets.
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c = 0.0 + 0.0i

156



c = -0.2 + 0.0i
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c = -0.6 + 0.4i
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c = -1.0 + 0.0i
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c = 0.2 + 0.0i
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c = 0.3 + 0.0i
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c = 0.5 + 0.5i
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c = -1.99 + 0.0i
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c = -3.0 + 0.0i

164



% Matlab source code: myjulia.m
%
% calculating Julia sets by inverse iteration,
% and random choice of positive or negative
% square root
%
hold off; clf; clear
z = 0.00001+0.0i;
c = -0.6+0.4i
for n=1:20

if (random(’unid’,2) == 1)
z = sqrt(z - c);

else
z = (-1)*sqrt(z - c);

end
end

165



y=zeros(1,40000);
y(1) = z;
for n=2:40000

if (random(’unid’,2) == 1)
y(n) = sqrt(y(n - 1) - c);

else
y(n) = (-1)*sqrt(y(n - 1) - c);

end
end

%pbaspect([1 1 1]);
hold on;
scatter(real(y),imag(y),4,[0 0 0],’filled’);
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• There is another way to visualize Julia sets. Instead of
doing inverse iteration, we look at the behavior of many
different points in a region. In particular, we iterate the
function fc(z) for each value of z in a rectangular region
containing the Julia set. Most of the points will run off to
∞, at varying rates of speed.

Hence, what we will do is assign a color to each pixel in the
rectangle according to the “escape time” of the
corresponding z value. In particular, for each point z, we
will see how many iterations of the function it takes for the
value to have magnitude > 2. We will also have a cutoff
for total iterations, because points in (or inside of) the
Julia set will never run off to ∞. We will then assign a color
according to the number of iterations.

Following are some examples of this:
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c = -0.4942+0.5229ii
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c = -0.7017 + 0.3842i
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c = 0.7322 + 0.2628i
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c = 0.2850 + 0.0100i
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The Mandelbrot Set ←

• The next step is to look at the Mandelbrot set. Consider
the functions we were looking at for Julia sets:

fc(z) = z2 + c,where c ∈ C.

We now ask, for c ∈ C, what happens to 0 under iterations
of fc – i.e., what is the behavior of fnc (0) as n→∞? There
are two possibilities: either fnc (0) stays bounded for all n, or
fnc (0)→∞ as n→∞. We can now define the Mandelbrot
Set:

Mandelbrot = {c ∈ C : fnc (0) stays bounded for all n}

There is a property of the Mandelbrot set that is similar to
the Julia sets: if |fnc (0)| > 2 for some n ≥ 0, then
c 6∈Mandelbrot. We can use this to make an escape time
picture of Mandelbrot.
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Escape time picture (black central area is Mandelbrot):

Mandelbrot Set

173



In all the fancy colorful pictures you have seen of the
Mandelbrot set, only the black parts are actually in the set
– the rest of the points are running away to ∞ at various
rates:

Mandelbrot Set around −0.742− 0.147i
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• Another way to view this is to think about whether 0 is
“trapped” inside the Julia set. Another definition of the
Mandelbrot set is this:

Mandelbrot = {c ∈ C : the Julia set of fc(z)is a connected set}

For points in the Mandelbrot set, the Julia set is one
connected piece. For points outside the Mandelbrot set, the
Julia set breaks up into a “dust” of isolated points. “Dusts”
like these are sometimes called “Cantor dusts,” because
they have strong similarities to (and properties like) the
Cantor set.
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Fixed points, limit sets, stable sets, attractors ←

• . . .
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Basins of attraction ←
• . . .

Newton’s method, roots of z3 − 1
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Statistical measures ←

• Suppose we have a data set. A thing we might want to do
is characterize the data set using a relatively small
collection of numbers. Or, at least, we might wish to use a
relatively small collection of numbers to distinguish one
data set from another. Each of these (hopefully
characteristic) numbers is called a statistic. An example of
a statistic is the mean. Other examples are the median, the
mode, the variance, the standard deviation, etc.

In some special cases, things can be particularly nice. A
normal distribution (Gaussian distribution)

f(x) =
1√

2πσ2
e
−(x−µ)2

2σ2

is completely characterized by its mean (µ) and standard
deviation (σ).
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This becomes more significant in view of the (traditional)
central limit theorem:

If {Xi} is a sequence of i.i.d. (independent, identically
distributed) random variables, with mean E[Xi] = µ and
variance V ar[Xi] = σ2 (in particular, finite mean and
variance), then we have the convergence:

√
n

1

n

n∑
i=1

Xi

− µ
 d−→ N (0, σ2),

where N (0, σ2) is the normal (Gaussian) distribution with

mean 0 and variance σ, and d−→ is convergence in
distribution.
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Convergence in distribution is the property, for a sequence
of random variables {Xn}, that

lim
n→∞Fn(x) = F (x)

for all x ∈ R at which F (x) is continuous, where Fn is the
cumulative distribution function of Xn, and F is the
cumulative distribution function of the limit distribution.

This leads to a paradigm concerning noisy data. If we
assume that noise (or error) is primarily the result of an
accumulation of independent random external influences,
then it (often) will make sense to assume that any noisiness
in our data will be normally distributed, and hence that we
can profitably assume that the basis for statistical analysis
will rest on studying the means and variances of our data
sets.
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One could more or less identify this paradigm as a Gaussian
/ Normal Distribution world, with mean and variance as
sufficient statistics for analysis of error / noise.

If we have a data set, and we have good reason (e.g., a
central limit theorem) to believe that a particular
parametrized statistical model (e.g., a Gaussian distribution,
with mean µ and variance σ2 as parameters) is appropriate
(correct?), then a sufficient statistic (or set of statistics) for
the model is a statistic (or set) such that no other statistic
that could be calculated from our data set could give
additional information about the parameters of the model
for that data set. In the case of the Gaussian / normal
distribution, the sufficient statistics would be the sample
mean and the sample variance. In particular, there would be
no reason to calculate any higher moments of the data set.
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• If we have reason to believe our data set does not come
from a Gaussian distribution, or, more generally that
Gaussian models are inappropriate or insufficient, we may
find it necessary to calculate additional or alternative
statistics.

One example of additional statistics is higher moments. For
a distribution X, for any k ≥ 1, we have the kth central
moment:

µk = E
[
(X − µ)k

]
=
〈

(X − µ)k
〉
,

where E[ ] is the expected value, and µ is the mean of the
distribution.

The second central moment µ2 is the variance of the
distribution. The third central moment µ3 is zero for
symmetric distributions (such as the Gaussian), and in
general is a measure of the asymmetry of the distribution.

182



Standardized versions of the 3rd and 4th central moments
are called the skew and kurtosis or the distribution:

skew(X) = γ1 = E

[(
X − µ
σ

)3
]

kurtosis(X) = γ2 = E

[(
X − µ
σ

)4
]
− 3

where σ is the standard deviation. The adjustment of −3 is
such that the kurtosis of the Gaussian is zero.

We can also standardize the higher central moments in the
same general way, as µk

σk
.

One issue that needs to be kept in mind is that the
moments may not exist – the relevant sums (or integrals)
may be unbounded.
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The various moments may be sufficient statistics to
characterize a distribution. More generally, we can use
various statistics to distinguish between distributions – in
particular, if two distributions have at least one difference in
their statistics, then we can have confidence that they are
different distributions.

Over time, various measures other than the moments have
been developed for the analysis of data. An important
element of the evolving paradigm of nonlinear systems and
chaos is the observation that what may look like random or
noisy data may actually be a deterministic chaotic system.
An example of this, which was observed by people such as
John von Neumann and Stan Ulam, is the logistic equation
with R = 4 (for appropriate initial values).

In the next section we’ll look some at a particular statistic
that has seen wide use in nonlinear systems – the fractal
dimension.
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Fractal dimensions, related measures ←

• There are various ways to think about dimension. Let’s
look for a little while at the Lorenz equations:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

where σ is the Prandtl number, ρ is the Rayleigh number,
and β is another adjustable parameter. All of σ, ρ, and β are
positive, with typical values σ = 10, β = 8/3, and ρ = 28.

If we pick particular values for σ, ρ, and β, and initial values
x0, y0 and z0, we can use a numerical solver to follow a
single trajectory. The picture on the following page uses
the MatLab built-in ODE45, which is a variable step
Runge-Kutta (4,5) solver:
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σ = 10, β = 8/3, ρ = 28, x0 = y0 = z0 = 10
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• One way to think about this is that the trajectory is
1-dimensional – as time passes, the system moves along a
(curved) line in space. A second way to think of it is that
the system lives in 3-dimensional (x,y,z) space. A third way
is that there are 3 adjustable parameters (σ, ρ, and β) that
control the behavior of the system. A fourth way is that
any particular trajectory is determined by six numbers, σ, ρ,
and β, and the initial conditions x0, y0, and z0.

There are a couple of other considerations. One is that
there is actually an attractor inside the system. For a
comparatively large range of initial conditions, the
trajectories will approach a limiting stable set. By following
a trajectory using a numerical solver, we get an
approximation to the attractor. We could explore the
dimension(s) of the attractor.
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A second consideration is what we might think of as the
“real world” problem. For real systems that we might study,
we typically don’t actually know the equations of motion of
the system. We are likely just to have a set of measured
data values extracted from the system through some
instrumentation.

We’ll look at a relatively generic approach to assigning a
number to a data set (i.e., calculating a statistic) which
corresponds with and generalizes the idea of dimension in
simple cases. We will be developing (one notion of) the
fractal dimension of a data set.
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• What we will do is to cover our data set with “boxes” (or
“balls” – see Carter [8]), and see how the number of boxes
grows as we decrease the sizes of the boxes.

We begin with a line (segment) of length 1:

We can cover this line segment with 1 box of side 1 = 1/20:
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We can cover the line segment with 2 boxes of side
1/2 = 1/21:

or 4 boxes of side 1/22:

In general, it can be covered with 2n boxes of side 1
2n.
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Now consider a square:

We can cover this with 1 box of side 1, or 4 of side 1/21:
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or 16 of side 1/22:

In general, we can cover the square with 22n boxes of side
1/2n.

In a similar fashion, we can cover a cube with 23n boxes of
side 1/2n.

We can now make a table, showing how the number of
boxes needed to cover a “cube” in dimension k grows as the
length of the side of the boxes (r) decreases.
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r num1 num2 num3 · · · numk · · ·

1
20 1 1 1 · · · 1 · · ·

1
21

1
21

1
22

1
23 · · · 1

2k
· · ·

1
22

1
22∗1

1
22∗2

1
22∗3 · · · 1

22∗k · · ·

... ... ... ... · · · ... · · ·

1
2n

1
2n∗1

1
2n∗2

1
2n∗3

· · · 1
2n∗k

· · ·

... ... ... ... · · · ... · · ·
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Putting all of this together, we can define a dimension by:

dim(S) = lim
r→0

log(num(r))

log
(

1
r

)
where r is the length of the side of a box, and num(r) is
the number of boxes of side r needed to cover our set S.

This dimension is often called the fractal dimension of the
set S.

For some (informal) calculations of fractal dimensions of
some example sets, you can look at Carter [10].

(I need to put more discussion of naming and details here
. . . )
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Strange attractors ←

• . . .

About fractals ←

• . . .

Continuous systems and flows ←

• . . .
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Some history (e.g., Poincaré) ←

• . . .

. . . 0.7, 0.3, 0.8, 0.2, 0.5 . . .

µ σ

. . . 0.7, 0.3, 0.8, 0.2, 0.5 . . .
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Some other history (e.g., catastrophe theory) ←

• . . .

Poincaré sections ←

• . . .

Entropy and information theory ←

• . . .
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Diagnostics and control of chaotic systems ←

• . . .

Other discrete systems – e.g.: ←

• . . .

Cellular automata ←

• . . .
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Iterated function systems ←

• . . .

Complex adaptive systems ←

• . . .
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Just to check (and practice our derivatives :-) with the damped
harmonic oscillator example . . .

We had:

x(t) = e−
b
2t ∗ 2 ∗ cos

(√
4− b2

2
t

)
from which,

v(t) = ẋ(t) = −
b

2
e−

b
2t ∗ 2 cos

(√
4− b2

2
t

)

− e−
b
2t ∗

√
4− b2 sin

(√
4− b2

2
t

)

= −e−
b
2t

(
b ∗ cos

(√
4− b2

2
t

)
+
√

4− b2 ∗ sin

(√
4− b2

2
t

))
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Combining the terms:

− x(t)− bv(t)

= −e−
b
2t ∗ 2 cos

(√
4− b2

2
t

)

+ be−
b
2t

(
b ∗ cos

(√
4− b2

2
t

)
+
√

4− b2 sin

(√
4− b2

2
t

))

= e−
b
2t

(
(b2 − 2) cos

(√
4− b2

2
t

)
+ b

√
4− b2 sin

(√
4− b2

2
t

))
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And, sure enough, when we calculate v̇(t), we get the same
thing:

v̇(t) =
b

2
e−

b
2t

(
b ∗ cos

(√
4− b2

2
t

)
+
√

4− b2 sin

(√
4− b2

2
t

))

− e−
b
2t

(
−b ∗

√
4− b2

2
sin

(√
4− b2

2
t

)
+

4− b2

2
cos

(√
4− b2

2
t

))

= e−
b
2t

(
b2

2
cos

(√
4− b2

2
t

)
+ b

√
4− b2

4
sin

(√
4− b2

2
t

))

+ e−
b
2t

(
b

√
4− b2

2
sin

(√
4− b2

2
t

)
−

4− b2

2
cos

(√
4− b2

2
t

))

= e−
b
2t

(
(b2 − 2) cos

(√
4− b2

2
t

)
+ b

√
4− b2 sin

(√
4− b2

2
t

))
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Appendix 2 ←

Something will go here . . .
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