Stirling’'s Approximation
(to n!)

Stirling’s approximation to the factorial is
typically written as:
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To find this approximation, we can begin with
the observation that:
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There are various ways to approximate this
sum, some more accurate than others, some
easier to compute than others.



One relatively straightforward way to
approximate is to use integrals:
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Exponentiating each side, we get the first
approximation:
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This is fairly rough, so in practice it makes
sense to ignore the factor of e in front, and
just use the approximation:
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This is good enough for a variety of uses ...
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A more careful derivation of Stirling’s
approximation (including upper and lower
bounds) using infinite series for logarithms
instead of integrals follows:

InNn! = nln n— kin{1l-+
£ n(a+)
L= L
= ninn+4 Z (Z k(—1)F 2 — )
L=1 \k=1

172,1

nln n—(n—l)—l— Zk:_ ——Zk_

Approximate S k—1 using

1TL1

_= 1 1 2
Inn—ZIn(l—l——> Zk ——Zk +..
T k



When we group according to powers of k we
get:
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Forn>9, Inn!l <S—M+41/12n is immediate.
For a lower bound, we can use [k > 9]:
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To determine M, the usual argument
involving Wallis’ product can be used:
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