Voting Paradoxes

Tom Carter
Winter, 2009

How can we tally votes?

- There are various ways we can handle "votíng"
- What ways will accurately reflect the "will of the people"?

Consider the scenario:

- suppose there are four candidates.
- Suppose further (as an example for us to follow) there are 10 voters.
- Suppose also that each voter has a personal linear ranking of the four candidates

Consider the scenario:

- each voter actually has an opinion on each of the candidates
- no voter has a circular ordering in their preferences
- denote the four candidates by A, B, C, D, and preferences by ">"

Consider the scenario:

- \# |ranking

$$
1 \mid B>C>A>D
$$

$$
2 \mid A>B>C>D
$$

$$
2 \mid A>D>B>C
$$

$$
2 \mid D>C>B>A
$$

$$
3 \mid C>D>B>A
$$

Election results:

- Each voter votes for 1 candidate. The results will be:

$$
A: C: D: B
$$

- with vote tallies $4: 3: 2: 1$

Consider the scenario:

(same scenario)

- \# |ranking

$$
1 \mid B>C>A>D
$$

$$
2 \mid A>B>C>D
$$

$$
2 \mid A>D>B>C
$$

$$
2 \mid D>C>B>A
$$

$$
3 \mid C>D>B>A
$$

Election results:

- Each voter votes for 2 candidates, results according to total number of votes received:

$$
D: C: A: B
$$

- with vote tallies $7: 6: 4: 3$

Consider the scenario:

(same scenario)

- \# |ranking

$$
1 \mid B>C>A>D
$$

$$
2 \mid A>B>C>D
$$

$$
2 \mid A>D>B>C
$$

$$
2 \mid D>C>B>A
$$

$$
3 \mid C>D>B>A
$$

Election results:

- Each voter votes for 3 candidates:
$B: C: D: A$
- with vote tallies $10: 8: 7: 5$

Consider the scenario:

(same scenario)

- \# |ranking

$$
1 \mid B>C>A>D
$$

$$
2 \mid A>B>C>D
$$

$$
2 \mid A>D>B>C
$$

$$
2 \mid D>C>B>A
$$

$$
3 \mid C>D>B>A
$$

Election results:

- Each voter expresses their ranking, candidates get $4,3,2$, or 1 points according to their ranking:
- $C: D: B: A$
- with vote tallies $27: 26: 24: 23$

Consider the scenario:

(same scenario)

- \# |ranking

$$
1 \mid B>C>A>D
$$

$$
2 \mid A>B>C>D
$$

$$
2 \mid A>D>B>C
$$

$$
2 \mid D>C>B>A
$$

$$
3 \mid C>D>B>A
$$

Election results:

- Using the four different ways of tallying people's preferences, we got four different results:
- A:D:B:C
- $B: D: A: C$
- $C: D: B: A$
- $D: B: A: C$
- We have three candidates, A, B, and C, for a position.
- The selection committee votes, and finds the ranking $A>B>C$.
- But, before any offer is made, candidate C withdraws.

Let's try another one:

- Should we just offer the position to A, or should the committee vote again?

Let's try another one:

- Here are the preferences of 13 members on the committee again:
- \# |ranking
$6 \mid A>C>B$
$4 \mid B>C>A$
$3 \mid C>B>A$

Let's try another one:

- In the initial vote, the results will be
- $A>B>C$
- with vote tallies of $6: 4: 3$.

Let's try another one:

- After C withdraws, the preferences will be:
- \# |ranking
$6 \mid A>B$
$4 \mid B>A$
$3 \mid B>A$

Let's try another one:

- After C withdraws, the preferences will be (or, rather):
- \# |ranking
$6 \mid A>B$
$7 \mid B>A$

Let's try another one:

- After C withdraws, the preferences will be (or, rather):
- \# |rankíng
$6 \mid A>B$
$7 \mid B>A$
- With B the winner...

Let's try another one:

- Back to the 13 member committee, with their original preferences:
- \# |ranking
$6 \mid A>C>B$
$4 \mid B>C>A$
$3 \mid C>B>A$

Let's try another one:

- Perhaps we should have used the "points" method in the first place (3 for first, 2 for second, 1 for third). In that case, the results would have been:
- $C>A>B$
- with points of $29: 25: 24$

Let's try another one:

- Now, when candidate C drops out, our first choice candidate is no longer available...
- Perhaps we should restart the search, and hope for better choices next tíme...

Arrow's

Impossibility Theorem

- These examples are related to a theorem by economist Kenneth Arrow concerning Social Choice Theory:
- No voting system can convert the ranked preferences of individuals into a community-wide ranking (with caveats).

