Some of the references listed above are available on line. They are listed again here for easy access:
Abrams D S and Lloyd S,
Non-Linear Quantum Mechanics implies Polynomial Time
solution for NP-complete and P problems,
http://xxx.lanl.gov/abs/quant-ph/9801041
Aharonov D, Beckman D, Chuang I and Nielsen M, What Makes Quantum Computers Powerful? http://wwwcas.phys.unm.edu/~mnielsen/science.html
Chuang I L, Laflamme R and Paz J P, Effects of Loss and Decoherence on a Simple Quantum Computer, http://xxx.lanl.gov/abs/quant-ph/9602018
Grover L K, A framework for fast quantum mechanical algorithms, http://xxx.lanl.gov/abs/quant-ph/9711043
Grover L K, A fast quantum mechanical algorithm for estimating the median, http://xxx.lanl.gov/abs/quant-ph/9607024
Knill E, Laflamme R and Zurek W H 1997 Resilient quantum computation: error models and thresholds http://xxx.lanl.gov/abs/quant-ph/9702058
Preskill J 1997 Fault tolerant quantum computation, to appear in Introduction to Quantum Computation, edited by H.-K. Lo, S. Popescu, and T. P. Spiller http://xxx.lanl.gov/abs/quant-ph/9712048
Preskill J, Kitaev A, Course notes for Physics 229, Fall 1998, Caltech Univ., http://www.theory.caltech.edu/people/preskill/ph229
Rieffel E, Polak W An Introduction to Quantum Computing for Non-Physicists http://xxx.lanl.gov/abs/quant-ph/9809016
Steane A, Quantum Computation, Reports on Progress in Physics 61 (1998) 117, http://xxx.lanl.gov/abs/quant-ph/9708022
Zalka C, Grover's quantum searching algorithm is optimal, http://xxx.lanl.gov/abs/quant-ph/9711070